Menu

Blog

Archive for the ‘chemistry’ category: Page 273

Jan 5, 2021

Magnetocuring Technology Could Point To A New Form Of 3D Printing

Posted by in category: chemistry

Researchers at Nanyang Technological University in Singapore have developed a new type of adhesive that could lead to a different form of 3D printing.

Magnetocuring

Continue reading “Magnetocuring Technology Could Point To A New Form Of 3D Printing” »

Jan 5, 2021

Researchers report new state of matter described as ‘liquid glass’

Posted by in categories: biological, chemistry, physics

Discovery of liquid glass sheds light on the old scientific problem of the glass transition: An interdisciplinary team of researchers from the University of Konstanz has uncovered a new state of matter, liquid glass, with previously unknown structural elements—new insights into the nature of glass and its transitions.

While glass is a truly ubiquitous material that we use on a daily basis, it also represents a major scientific conundrum. Contrary to what one might expect, the true nature of glass remains something of a mystery, with scientific inquiry into its chemical and physical properties still underway. In chemistry and physics, the term glass itself is a mutable concept: It includes the substance we know as window glass, but it may also refer to a range of other materials with properties that can be explained by reference to glass-like behavior, including, for instance, metals, plastics, proteins, and even biological cells.

While it may give the impression, glass is anything but conventionally solid. Typically, when a material transitions from a liquid to a the molecules line up to form a crystal pattern. In glass, this does not happen. Instead, the molecules are effectively frozen in place before crystallization happens. This strange and disordered state is characteristic of glasses across different systems and scientists are still trying to understand how exactly this metastable state forms.

Jan 5, 2021

This Drone Sniffs Out Odors With a Real Moth Antenna

Posted by in categories: chemistry, cyborgs, drones, neuroscience

“It’s all thanks to the sacrifice of the hawk moth Manduca sexta, which is an extremely sensitive smeller, like other moths. When a moth picks up a scent, like that of a flower or a potential mate, the odors bind to proteins inside the antennae, and these proteins in turn activate neurons dedicated to specific chemicals. That means the antennae are producing electrical signals that researchers can tap into. In order to create a sort of moth-drone cyborg, mechanical engineer Melanie Anderson of the University of Washington cold-anesthetized a hawk moth in a freezer before removing its antennae. Then she cut both ends off of a single antenna and attached each to an itty-bitty wire hooked up to an electrical circuit. “A lot like a heart monitor, which measures the electrical voltage that is produced by the heart when it beats, we measure the electrical signal produced by the antenna when it smells odor,” says Anderson, lead author on a recent paper in the journal Bioinspiration and Biomimetics describing the research. “And very similarly, the antenna will produce these spike-shaped pulses in response to patches of odor.””


Researchers slap a living antenna on a drone to give the machine an insanely keen sense of smell. Ladies and gentlemen, meet the “Smellicopter.”

Jan 4, 2021

Breakthrough for Healthcare, Agriculture, Energy: Artificial Intelligence Reveals Recipe for Building Artificial Proteins

Posted by in categories: biotech/medical, chemistry, food, information science, robotics/AI

Proteins are essential to cells, carrying out complex tasks and catalyzing chemical reactions. Scientists and engineers have long sought to harness this power by designing artificial proteins that can perform new tasks, like treat disease, capture carbon or harvest energy, but many of the processes designed to create such proteins are slow and complex, with a high failure rate.

In a breakthrough that could have implications across the healthcare, agriculture, and energy sectors, a team lead by researchers in the Pritzker School of Molecular Engineering at the University of Chicago has developed an artificial intelligence-led process that uses big data to design new proteins.

By developing machine-learning models that can review protein information culled from genome databases, the researchers found relatively simple design rules for building artificial proteins. When the team constructed these artificial proteins in the lab, they found that they performed chemical processes so well that they rivaled those found in nature.

Jan 3, 2021

Image: Plasma propulsion for small satellites

Posted by in categories: chemistry, energy, satellites

A test firing of Europe’s Helicon Plasma Thruster, developed with ESA by SENER and the Universidad Carlos III’s Plasma & Space Propulsion Team (EP2-UC3M) in Spain. This compact, electrodeless and low voltage design is ideal for the propulsion of small satellites, including maintaining the formation of large orbital constellations.

While traditional chemical have fundamental upper limits, electric propulsion pumps extra energy into the thrust reaction to reach much higher propellant velocities by accelerating propellant using . There are many methods of electric propulsion, many of which require electrodes to apply a current, increasing thruster cost and complexity.

By contrast the Helicon Plasma Thruster uses high power radio frequency waves to excite the propellant into a plasma.

Jan 3, 2021

Biochemists Switch DNA Functions on and Off Using Light

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

Biochemists use protein engineering to transfer photocaging groups to DNA.

DNA (deoxyribonucleic acid) is the basis of life on earth. The function of DNA is to store all the genetic information, which an organism needs to develop, function and reproduce. It is essentially a biological instruction manual found in every cell.

Biochemists at the University of Münster have now developed a strategy for controlling the biological functions of DNA with the aid of light. This enables researchers to better understand and control the different processes which take place in the cell – for example epigenetics, the key chemical change and regulatory lever in DNA.

Jan 3, 2021

Desalination Breakthrough Could Lead to Cheaper Water Filtration

Posted by in categories: chemistry, energy, food, health, nanotechnology, sustainability

AUSTIN, Texas — Producing clean water at a lower cost could be on the horizon after researchers from The University of Texas at Austin and Penn State solved a complex problem that had baffled scientists for decades, until now.

Desalination membranes remove salt and other chemicals from water, a process critical to the health of society, cleaning billions of gallons of water for agriculture, energy production and drinking. The idea seems simple — push salty water through and clean water comes out the other side — but it contains complex intricacies that scientists are still trying to understand.

The research team, in partnership with DuPont Water Solutions, solved an important aspect of this mystery, opening the door to reduce costs of clean water production. The researchers determined desalination membranes are inconsistent in density and mass distribution, which can hold back their performance. Uniform density at the nanoscale is the key to increasing how much clean water these membranes can create.

Jan 2, 2021

Artificial Intelligence Solves Schrödinger’s Equation, a Fundamental Problem in Quantum Chemistry

Posted by in categories: chemistry, information science, particle physics, quantum physics, robotics/AI, space

Scientists at Freie Universität Berlin develop a deep learning method to solve a fundamental problem in quantum chemistry.

A team of scientists at Freie Universität Berlin has developed an artificial intelligence (AI) method for calculating the ground state of the Schrödinger equation in quantum chemistry. The goal of quantum chemistry is to predict chemical and physical properties of molecules based solely on the arrangement of their atoms in space, avoiding the need for resource-intensive and time-consuming laboratory experiments. In principle, this can be achieved by solving the Schrödinger equation, but in practice this is extremely difficult.

Up to now, it has been impossible to find an exact solution for arbitrary molecules that can be efficiently computed. But the team at Freie Universität has developed a deep learning method that can achieve an unprecedented combination of accuracy and computational efficiency. AI has transformed many technological and scientific areas, from computer vision to materials science. “We believe that our approach may significantly impact the future of quantum chemistry,” says Professor Frank Noé, who led the team effort. The results were published in the reputed journal Nature Chemistry.

Jan 2, 2021

Life Discovered in Deep Ocean Sediments at Temperatures Above Water’s Boiling Point

Posted by in category: chemistry

An international research team that included three scientists from the University of Rhode Island’s Graduate School of Oceanography has discovered single-celled microorganisms in a location where they didn’t expect to find them.

“Water boils on the (Earth’s) surface at 100 degrees Celsius, and we found organisms living in sediments at 120 degrees Celsius,” said URI Professor of Oceanography Arthur Spivack, who led the geochemistry efforts of the 2016 expedition organized by the Japan Agency for Marine-Earth Science and Technology and Germany’s MARUM–Center for Marine and Environmental Sciences at the University of Bremen. The study was carried out as part of the work of Expedition 370 of the International Ocean Discovery Program.

The research results from a two-month-long expedition in 2016 were published in December 2020 in the journal Science.

Jan 1, 2021

World’s First Chemistry on a Chip “Chem Chip”

Posted by in categories: chemistry, computing

» | Advanced Technology Services & Products for Your Organization.


Advanced technology services & products for your organization.