Toggle light / dark theme

Inspired by the color-changing ability of chameleons, researchers have developed a sustainable technique to 3D-print multiple, dynamic colors from a single ink.

“By designing new chemistries and printing processes, we can modulate structural color on the fly to produce color gradients not possible before,” said Ying Diao, an associate professor of chemistry and chemical and biomolecular engineering at the University of Illinois Urbana-Champaign and a researcher at the Beckman Institute for Advanced Science and Technology.

The study appears in the journal PNAS.

Scientists from the National University of Singapore (NUS) have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence (AI) at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.

Open-shell magnetic nanographenes represent a technologically appealing class of new carbon-based quantum materials, which host robust π-spin centres and non-trivial collective quantum magnetism. These properties are crucial for developing high-speed electronic devices at the molecular level and creating quantum bits, the building blocks of quantum computers. Despite significant advancements in the synthesis of these materials through on-surface synthesis, a type of solid-phase chemical reaction, achieving precise fabrication and tailoring of the properties of these quantum materials at the atomic level has remained a challenge.

The figure illustrates the chemist-intuited atomic robotic probe that would allow chemists to precisely fabricate organic quantum materials at the single-molecule level. The robotic probe can conduct real-time autonomous single-molecule reactions with chemical bond selectivity, demonstrating the fabrication of quantum materials with a high level of control. (© Nature Synthesis)

Experiments demonstrate some of the unusual features of molecular reactions that occur in the deep cold of interstellar space.

Many common small molecules are formed in interstellar space, and their low temperatures are expected to have profound effects on their chemical reactions because of quantum-mechanical effects that are masked at higher temperatures. Researchers have now demonstrated some of these cold chemistry phenomena—such as the effects of molecular rotation and collision energy on reaction rates—in a reaction between a hydrogen ion and an ammonia molecule in the lab. The results, while intuitively surprising at first glance, can be explained by a careful theoretical analysis of the quantum chemistry.

Measuring reaction rates at low temperatures is useful for testing quantum-chemical theory because in those conditions molecules may occupy only a few well-defined quantum states. Such experiments could also offer insights into chemical processes in the cold clouds of gas in star-forming regions of interstellar space, where many of the simple molecules that make up solar systems are formed. But low-temperature experiments are difficult, especially for charged atoms and molecules (ions), because they are very sensitive to stray electric fields in the environment, which accelerate and heat up the ions.

A chemical etching method for widening the pores of metal-organic frameworks (MOFs) could improve various applications of MOFs, including in fuel cells and as catalysts. Researchers at Nagoya University in Japan and East China Normal University in China developed the new method with collaborators elsewhere in Japan, Australia, and China, and their work was published in the Journal of the American Chemical Society.

MOFs are composed of metal clusters or ions interconnected by carbon-based (organic) linker groups. Varying the metallic and organic components generates a variety of MOFs suitable for a wide range of applications, including catalysis, , and gas storage.

Some MOFs have clear potential for catalyzing the inside fuel cells, which are being explored as the basis of renewable energy systems. Because they don’t use , fuel cells could play a key role in the transition to a low-or zero-emissions economy to combat climate change.

Polaritonic chemistry has ushered in new avenues for controlling molecular dynamics. However, two key questions remain: (i) Can classical light sources elicit the same effects as certain quantum light sources on molecular systems? (ii) Can semiclassical treatments of light–matter interactions capture nontrivial quantum effects observed in molecular dynamics? This work presents a quantum-classical approach addressing issues of realizing cavity chemistry effects without actual cavities. It also highlights the limitations of the standard semiclassical light–matter interaction. It is demonstrated that classical light sources can mimic quantum effects up to the second order of light–matter interaction provided that the mean-field contribution, the symmetrized two-time correlation function, and the linear response function are the same in both situations. Numerical simulations show that the quantum-classical method aligns more closely with exact quantum molecular-only dynamics for quantum light states such as Fock states, superpositions of Fock states, and vacuum squeezed states than does the conventional semiclassical approach.

A team of NUS researchers led by Associate Professor Lu Jiong from the Department of Chemistry and Institute for Functional Intelligent Materials, together with their international collaborators, have developed a novel concept of a chemist-intuited atomic robotic probe (CARP).

This innovation, which uses artificial intelligence (AI) to mimic the decision-making process of chemists, enables the manufacturing of quantum materials with unrivaled intelligence and precision for future quantum technology applications such as data storage and quantum computing.

Open-shell magnetic nanographene is a type of carbon-based quantum material that possesses key electronic and that are important for developing extremely fast electronic devices at the , or creating quantum bits, the building blocks of quantum computers. The processes used to develop such materials have progressed over the years due the discovery of a new type of solid-phase chemical reaction known as on-surface synthesis.

An interesting exploration of the importance of oceanic microorganisms to biogeochemical processes, how existing computational climate models do not adequately capture the complexity introduced by these microbes, and suggestions for future directions in climate modeling that better incorporate the…


Microorganisms are the engines that drive most marine processes. Ocean modelling must evolve to take their biological complexity into account.

Inside her small office, with a window overlooking the iconic Kerckhoff Hall student centre at University of California, Los Angeles (UCLA), chemical biologist Mireille Kamariza is pursuing her big dream. Since 2015, she has steadily worked to stop transmission of deadly tuberculosis (TB) superbugs, which in 2022 infected more than 10 million people and killed more than one million.

As a PhD student working with Nobel laureate Carolyn Bertozzi, now a chemist at Stanford University in California, she developed a fluorescent diagnostic test that could be used for quick detection of TB, especially in resource-poor settings. In 2019, alongside Bertozzi, Kamariza founded the biotech start-up company OliLux Biosciences, based in Los Angeles, to develop reliable tools for detecting TB that are tailored to the complex needs of poorer countries. Nature sat down with Kamariza to talk about her progress in testing these diagnostic tools for use in the real world, and the uphill battle in fighting the spread of TB.