Menu

Blog

Archive for the ‘chemistry’ category: Page 95

Sep 25, 2023

China May Have Built A Third Exascale Supercomputer — And May Be Hiding Its Real Capabilities

Posted by in categories: biotech/medical, chemistry, economics, military, robotics/AI, supercomputing

Computer performance is measured in FLOPS, or floating-point operations per second. The first supercomputer, which was developed in 1964, could run 3,000,000 FLOPS, i.e., 3 megaFLOPS. Exa means 18 zeros, meaning 1,000,000,000,000,000,000 FLOPS. An exascale computer can perform that many operations — something that is almost impossible to imagine.

Now, there is a huge advantage to commanding that kind of computing power in today’s world. Here is what the same McKinsey report says: “Exascale computing could allow scientists to solve problems that have until now been impossible. With exascale, exponential increases in memory, storage, and compute power may drive breakthroughs in several industries: energy production, storage, transmission, materials science, heavy industry, chemical design, AI and machine learning, cancer research and treatment, earthquake risk assessment, and many more.”

Put simply, China now may have the computing power at its disposal to match, or even overtake, technology leaders like the United States in several areas that could be key to becoming the dominant economic and military power in the world. China could also pair its advances in artificial intelligence with this mind-boggling computering power and achieve technological and military dominance quite quickly.

Sep 25, 2023

Gene Editing Tool Improves Immunotherapy

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

There are many therapies that target cancer. The most well-known is chemotherapy, which is a toxic chemical that is directed at a tumor to kill the cells. This is currently the standard of care for most types of cancer. However, as science advances, less toxic and more direct therapies are discovered. The most recently discovered therapy is known as ‘immunotherapy’, which redirects the immune system to kill the tumor. There are many successful treatments with immunotherapy among different types of cancers, including melanoma and lung cancer. Unfortunately, immunotherapy is limited in many solid tumors due to the immunosuppressive tumor microenvironment (TME). The TME is a pro-tumor environment that the cancer has made by releasing specific proteins that allow it to progress. In this environment the tumor can remain undetected from the immune system and progress throughout the body. Different immune cells in the TME become polarized and alter their functions to help the tumor proliferate and grow. It is now becoming more common to pair therapies together including immunotherapy with chemotherapy. Scientists are still trying to find ways to improve treatment and completely eradicate the tumor.

In San Francisco, California, a group of scientists, led by Dr. Alex Marson, are working to modify gene expression to reprogram or change immune cells in the TME to attack cancer. There has been some success, but this immunotherapy does not help treat all patients. In addition, the screening process to determine genetic changes to determine which cells would result in the greatest treatment efficacy is a long, arduous process. A group at the Gladstone Institutes has worked with Marson at University of California San Francisco (UCSF) to develop a strategy that helps pair different genetic combinations in a faster amount of time to determine the most beneficial treatment outcomes. This screening technique is called Pooled Knockin Screening (ModPoKI). ModPoKI finds the best genetic modifications to express in immune cells that will have prolonged anti-tumor efficacy.

The study that demonstrated ModPoKI was published recently in Cell, which demonstrates our ability to now understand how to combine genetic programs. ModPoKI combines genes into long lines of DNA to generate roughly 10,000 combinations to match with a genetically engineered immune cell known as a T cells are major immune cells that primarily target foreign antigens, like cancer cells, and kill them. Once the optimal gene modification is found, it is put into the engineered immune cells that are polarized to kill cancer. After further investigation, the combinations made by ModPoKI resulted in the most polarized anti-tumor T cells.

Sep 24, 2023

NASA’s First Asteroid Sample Has Landed, Now Secure in Clean Room

Posted by in categories: chemistry, security, space

After years of anticipation and hard work by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security – Regolith Explorer) team, a capsule of rocks and dust collected from asteroid Bennu finally is on Earth. It landed at 8:52 a.m. MDT (10:52 a.m. EDT) on Sunday, in a targeted area of the Department of Defense’s Utah Test and Training Range near Salt Lake City.

Within an hour and a half, the capsule was transported by helicopter to a temporary clean room set up in a hangar on the training range, where it now is connected to a continuous flow of nitrogen.

Getting the sample under a “nitrogen purge,” as scientists call it, was one of the OSIRIS-REx team’s most critical tasks today. Nitrogen is a gas that doesn’t interact with most other chemicals, and a continuous flow of it into the sample container inside the capsule will keep out earthly contaminants to leave the sample pure for scientific analyses.

Sep 23, 2023

Split gene-editing tool offers greater precision

Posted by in categories: biotech/medical, chemistry, genetics

To make a gene-editing tool more precise and easier to control, Rice University engineers split it into two pieces that only come back together when a third small molecule is added.

Researchers in the lab of chemical and biomolecular engineer Xue Sherry Gao created a CRISPR-based gene editor designed to target adenine ⎯ one of the four main DNA building blocks ⎯ that remains inactive when disassembled but kicks into gear once the binding molecule is added.

Compared to the intact original, the split editor is more precise and stays active for a narrower window of time, which is important for avoiding off-target edits. Moreover, the activating small molecule used to bind the two pieces of the tool together is already being used as an anticancer and immunosuppressive drug.

Sep 23, 2023

Dr George Dodge — CEO & Co-Founder — Mechano-Therapeutics — Revolutionizing Musculoskeletal Health

Posted by in categories: biotech/medical, chemistry, health

Revolutionizing Musculoskeletal Health Through Microcapsule Drug Delivery — Dr. @George R. Dodge, Ph.D. — CEO & Co-Founder — Mechano-Therapeutics LLC


Dr. George R. Dodge, Ph.D. is CEO & Co-Founder of Mechano-Therapeutics LLC (https://mechano-therapeutics.com/), a biotechnology company spun out from his lab, and the labs of his partners Dr. Rob Mauck and Dr. Daeyeon Lee, at the University of Pennsylvania, specializing in microcapsule development using proprietary microfluidics for drug encapsulation, with a mission to revolutionize musculoskeletal health using an innovative platform technology to enhance delivery of therapeutics for improving patient outcomes.

Continue reading “Dr George Dodge — CEO & Co-Founder — Mechano-Therapeutics — Revolutionizing Musculoskeletal Health” »

Sep 23, 2023

Unlocking Battery Mysteries: X-Ray “Computer Vision” Reveals Unprecedented Physical and Chemical Details

Posted by in categories: biological, chemistry, computing, nanotechnology, physics

It lets researchers extract pixel-by-pixel information from nanoscale.

The nanoscale refers to a length scale that is extremely small, typically on the order of nanometers (nm), which is one billionth of a meter. At this scale, materials and systems exhibit unique properties and behaviors that are different from those observed at larger length scales. The prefix “nano-” is derived from the Greek word “nanos,” which means “dwarf” or “very small.” Nanoscale phenomena are relevant to many fields, including materials science, chemistry, biology, and physics.

Sep 23, 2023

Unique New Material Could Generate More Computing Power and Memory Storage While Using Significantly Less Energy

Posted by in categories: biotech/medical, chemistry, computing

For the first time, a team from the University of Minnesota Twin Cities has synthesized a thin film of a unique topological semimetal material that has the potential to generate more computing power and memory storage while using significantly less energy. Additionally, the team’s close examination of the material yielded crucial insights into the physics behind its unique properties.

The study was recently published in the journal Nature Communications.

<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Sep 23, 2023

Brazilian researchers develop method of purifying water contaminated by glyphosate

Posted by in categories: chemistry, economics

Researchers at São Paulo State University (UNESP) in Brazil have developed a strategy for removing glyphosate, one of the world’s most frequently used herbicides, from water. Inspired by the concept of the circular economy, the technique is based on sugarcane bagasse, a waste material produced by sugar and ethanol plants.

“Isolated and chemically functionalized sugarcane bagasse fibers can be used as adsorbent material. Glyphosate adheres to its surface and is removed as a water contaminant by filtration, decantation or centrifugation,” Maria Vitória Guimarães Leal, told Agência FAPESP.

She is the first author of an article on the research published in the journal Pure and Applied Chemistry. Adsorption is a process whereby molecules dispersed in a liquid or gaseous medium adhere to a solid insoluble surface, which is typically porous.

Sep 22, 2023

SLAC fires up the world’s most powerful X-ray laser: LCLS-II ushers in a new era of science

Posted by in categories: biological, chemistry, computing, quantum physics, science, sustainability

The newly upgraded Linac Coherent Light Source (LCLS) X-ray free-electron laser (XFEL) at the Department of Energy’s SLAC National Accelerator Laboratory successfully produced its first X-rays, and researchers around the world are already lined up to kick off an ambitious science program.

The upgrade, called LCLS-II, creates unparalleled capabilities that will usher in a new era in research with X-rays.

Scientists will be able to examine the details of quantum materials with unprecedented resolution to drive new forms of computing and communications; reveal unpredictable and fleeting chemical events to teach us how to create more sustainable industries and ; study how carry out life’s functions to develop new types of pharmaceuticals; and study the world on the fastest timescales to open up entirely new fields of scientific investigation.

Sep 22, 2023

Violating the Universal Kasha’s Rule — Scientists Uncover Secrets of a Mysterious Blue Molecule

Posted by in categories: chemistry, energy

Scientists from IOCB Prague are the first to describe the causes of the behavior of one of the fundamental aromatic molecules, azulene. This molecule has captivated the scientific community not just with its distinct blue hue, but also with its unique properties.

Their current undertaking will influence the foundations of organic chemistry in the years to come and in practice will help harness the maximum potential of captured light energy. Their findings were recently published in the Journal of the American Chemical Society (JACS).

Azulene has piqued the curiosity of chemists for many years. The question of why it is blue, despite there being no obvious reason for this, was answered almost fifty years ago by a scientist of global importance, who, coincidentally, had close ties with IOCB Prague, Prof. Josef Michl.

Page 95 of 342First9293949596979899Last