Menu

Blog

Archive for the ‘climatology’ category: Page 12

Jul 28, 2024

An Unexpected Twist Lights Up the Secrets of Turbulence

Posted by in categories: climatology, physics

Having solved a central mystery about the “twirliness” of tornadoes and other types of vortices, William Irvine has set his sights on turbulence, the white whale of classical physics.

Jul 28, 2024

New microgrids model takes into account a fair design of decentralized energy systems

Posted by in categories: climatology, cybercrime/malcode, sustainability

Local decentralized energy systems, known as microgrids, can make urban infrastructures more resilient and reduce risks for the population, for example, in large-scale power outages due to natural hazards or cyberattacks.

In Nature Sustainability researchers from Karlsruhe Institute of Technology (KIT) present design criteria for microgrids that allow for fair treatment of different social groups alongside technical factors. The study shows how cities can shape the transformation towards a secure and more sustainable and equitable energy supply.

Climate change increases the probability of extreme events, as we have seen during the massive flooding of large parts of southern Germany in June. The question of how cities and municipalities can make more resilient and more secure in the face of such crises is bringing so-called microgrids into focus.

Jul 27, 2024

Balancing instability and robustness: New mathematical framework for dynamics of natural systems

Posted by in categories: chemistry, climatology, mathematics

Scientists all over the world use modeling approaches to understand complex natural systems such as climate systems or neuronal or biochemical networks. A team of researchers has now developed a new mathematical framework that explains, for the first time, a mechanism behind long transient behaviors in complex systems.

Jul 27, 2024

Black Holes Can’t Be Created by Light

Posted by in categories: climatology, cosmology, quantum physics

The formation of a black hole from light alone is permitted by general relativity, but a new study says quantum physics rules it out.

Black holes are known to form from large concentrations of mass, such as burned-out stars. But according to general relativity, they can also form from ultra-intense light. Theorists have speculated about this idea for decades. However, calculations by a team of researchers now suggest that light-induced black holes are not possible after all because quantum-mechanical effects cause too much leakage of energy for the collapse to proceed [1].

The extreme density of mass produced by a collapsed star can curve spacetime so severely that no light entering the region can escape. The formation of a black hole from light is possible according to general relativity because mass and energy are equivalent, so the energy in an electromagnetic field can also curve spacetime [2]. Putative electromagnetic black holes have become popularly known as kugelblitze, German for “ball lightning,” following the terminology used by Princeton University physicist John Wheeler in early studies of electromagnetically generated gravitational fields in the 1950s [3].

Jul 25, 2024

Two Approaches to Forest Expansion: Natural Regeneration vs. Planting

Posted by in categories: climatology, government, sustainability

In the ongoing fight against climate change, is it better to plant trees or allow nature to do it for us? This is what a recent study published in Nature Climate Change as a team of international researchers investigated the cost-effectiveness of reforestation for mitigating the effects of climate change, specifically regarding whether planting trees or natural reforestation are appropriate measures for this effort. This study holds the potential to help scientists, conservationists, and the public better understand the steps that can be taken to mitigate the effects of climate change, for both the short and long term.

“Trees can play a role in climate change mitigation, for multiple reasons,” said Dr. Jacob Bukoski, who is an Assistant Professor in the Oregon State University College of Forestry and a co-author on the study. “It’s pretty easy to understand that forests pull carbon dioxide from the atmosphere and store it, and trees are something pretty much everyone can get behind – we have seen multiple bipartisan acts for tree planting introduced in Congress. This study brings a nuanced perspective to the whole ‘should we plant trees to solve climate change’ debate.”

Jul 25, 2024

Scientists plan climate engineering experiment in ocean off Cape Cod

Posted by in categories: chemistry, climatology, engineering, sustainability

Scientists from the Woods Hole Oceanographic Institution are seeking a federal permit to experiment in the waters off Cape Cod and see if tweaking the ocean’s chemistry could help slow climate change.

If the project moves forward, it will likely be the first ocean field test of this technology in the U.S. But the plan faces resistance from both environmentalists and the commercial fishing industry.

The scientists want to disperse 6,600 gallons of sodium hydroxide — a strong base — into the ocean about 10 miles south of Martha’s Vineyard. The process, called ocean alkalinity enhancement or OAE, should temporarily increase that patch of water’s ability to absorb carbon dioxide from the air. This first phase of the project, targeted for early fall, will test chemical changes to the seawater, diffusion of the chemical and effects on the ecosystem.

Jul 25, 2024

New Quantum “Tornado” Experiments Challenge Our Understanding of Black Holes

Posted by in categories: climatology, cosmology, quantum physics

Researchers have created a quantum tornado in superfluid helium to simulate black hole conditions, advancing our understanding of black hole physics and the behavior of quantum fields in curved spacetimes, culminating in a unique art and science exhibition.

Scientists have, for the first time, created a giant quantum vortex in superfluid helium to mimic a black hole. This breakthrough has enabled them to observe in greater detail how analog black holes behave and interact with their surroundings.

Research led by the University of Nottingham, in collaboration with King’s College London and Newcastle University, has created a novel experimental platform: a quantum tornado. They have created a giant swirling vortex within superfluid helium that is chilled to the lowest possible temperatures. Through the observation of minute wave dynamics on the superfluid’s surface, the research team has shown that these quantum tornados mimic gravitational conditions near rotating black holes. The research has been published today in Nature.

Jul 24, 2024

Scientists publish first experimental evidence for new groups of methane-producing organisms

Posted by in categories: biological, climatology, space, sustainability

A team of scientists from Montana State University has provided the first experimental evidence that two new groups of microbes thriving in thermal features in Yellowstone National Park produce methane—a discovery that could one day contribute to the development of methods to mitigate climate change and provide insight into potential life elsewhere in our solar system.

Jul 24, 2024

Emergent Properties (Stanford Encyclopedia of Philosophy)

Posted by in categories: biological, chemistry, climatology, particle physics, space

A very relevant subject for research.


The world appears to contain diverse kinds of objects and systems—planets, tornadoes, trees, ant colonies, and human persons, to name but a few—characterized by distinctive features and behaviors. This casual impression is deepened by the success of the special sciences, with their distinctive taxonomies and laws characterizing astronomical, meteorological, chemical, botanical, biological, and psychological processes, among others. But there’s a twist, for part of the success of the special sciences reflects an effective consensus that the features of the composed entities they treat do not “float free” of features and configurations of their components, but are rather in some way(s) dependent on them.

Consider, for example, a tornado. At any moment, a tornado depends for its existence on dust and debris, and ultimately on whatever micro-entities compose it; and its properties and behaviors likewise depend, one way or another, on the properties and interacting behaviors of its fundamental components. Yet the tornado’s identity does not depend on any specific composing micro-entity or configuration, and its features and behaviors appear to differ in kind from those of its most basic constituents, as is reflected in the fact that one can have a rather good understanding of how tornadoes work while being entirely ignorant of particle physics.

Jul 24, 2024

Proton-conducting materials could enable new green energy technologies

Posted by in categories: climatology, computing, particle physics, sustainability

As the name suggests, most electronic devices today work through the movement of electrons. But materials that can efficiently conduct protons—the nucleus of the hydrogen atom—could be key to a number of important technologies for combating global climate change.

Most proton-conducting inorganic materials available now require undesirably high temperatures to achieve sufficiently high conductivity. However, lower-temperature alternatives could enable a variety of technologies, such as more efficient and durable fuel cells to produce clean electricity from hydrogen, electrolyzers to make clean fuels such as hydrogen for transportation, solid-state proton batteries, and even new kinds of computing devices based on iono-electronic effects.

In order to advance the development of proton conductors, MIT engineers have identified certain traits of materials that give rise to fast proton conduction. Using those traits quantitatively, the team identified a half-dozen new candidates that show promise as fast proton conductors. Simulations suggest these candidates will perform far better than existing materials, although they still need to be conformed experimentally. In addition to uncovering potential new materials, the research also provides a deeper understanding at the of how such materials work.

Page 12 of 158First910111213141516Last