Toggle light / dark theme

Quantum walk computing unlocks new potential in quantum science and technology

Quantum walks are a powerful theoretical model using quantum effects such as superposition, interference and entanglement to achieve computing power beyond classical methods.

A research team at the National Innovation Institute of Defense Technology from the Academy of Military Sciences (China) recently published a review article that thoroughly summarizes the theories and characteristics, physical implementations, applications and challenges of quantum walks and quantum walk computing. The review was published Nov. 13 in Intelligent Computing in an article titled “Quantum Walk Computing: Theory, Implementation, and Application.”

As quantum mechanical equivalents of classical random walks, quantum walks use quantum phenomena to design advanced algorithms for applications such as database search, network analysis and navigation, and . Different types of quantum walks include discrete-time quantum walks, continuous-time quantum walks, discontinuous quantum walks, and nonunitary quantum walks. Each model presents unique features and computational advantages.

Revolutionizing Quantum Tech: Palm-Sized Lasers Break Lab Boundaries

UC Santa Barbara researchers developed a compact, low-cost laser that matches the performance of lab-scale systems. Using rubidium atoms and advanced chip integration, it enables applications like quantum computing, timekeeping, and environmental sensing, including satellite-based gravitational mapping.

For experiments requiring ultra-precise atomic measurements and control—such as two-photon atomic clocks, cold-atom interferometer sensors, and quantum gates—lasers are indispensable. The key to their effectiveness lies in their spectral purity, meaning they emit light at a single color or frequency. Today, achieving the ultra-low-noise, stable light necessary for these applications relies on bulky and expensive tabletop laser systems designed to generate and manage photons within a narrow spectral range.

But what if these atomic applications could break free from the confines of labs and benchtops? This is the vision driving research in UC Santa Barbara engineering professor Daniel Blumenthal’s lab, where his team is working to replicate the performance of these high-precision lasers in lightweight, handheld devices.

Quantum Spin Liquids Are Real — and Could Change Technology Forever

Scientists have found evidence of a strange state of matter called a quantum spin liquid in a material known as pyrochlore cerium stannate.

In this mysterious state, magnetic particles don’t settle into a fixed pattern but stay in constant motion, even at extremely low temperatures. Researchers used advanced tools like neutron scattering and theoretical models to detect unusual magnetic behavior that behaves like waves of light. This breakthrough could lead to new discoveries in physics and future technologies like quantum computing.

Quantum Spin Liquids

Fast, rewritable computing with DNA origami registers

FOR IMMEDIATE RELEASE

“High-Speed Sequential DNA Computing Using a Solid-State DNA Origami Register” ACS Central Science

DNA stores the instructions for life and, along with enzymes and other molecules, computes everything from hair color to risk of developing diseases. Harnessing that prowess and immense storage capacity could lead to DNA-based computers that are faster and smaller than today’s silicon-based versions. As a step toward that goal, researchers report in ACS Central Science a fast, sequential DNA computing method that is also rewritable — just like current computers.

Plasma heating efficiency in fusion devices boosted by metal screens

Heating plasma to the ultra-high temperatures needed for fusion reactions requires more than turning the dial on a thermostat. Scientists consider multiple methods, one of which involves injecting electromagnetic waves into the plasma, the same process that heats food in microwave ovens. But when they produce one type of heating wave, they can sometimes simultaneously create another type of wave that does not heat the plasma, in effect wasting energy.

In response to the problem, scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have performed computer simulations confirming a technique that prevents the production of the unhelpful waves, known as slow modes, boosting the heat put into the and increasing the efficiency of the fusion reactions.

“This is the first time scientists have used 2D computer simulations to explore how to reduce slow modes,” said Eun-Hwa Kim, a PPPL principal research physicist and lead author of the paper reporting the results in Physics of Plasmas. “The results could lead to more efficient plasma heating and possibly an easier path to fusion energy.”

Scientists achieve collective quantum behavior in macroscopic oscillators

Quantum technologies are radically transforming our understanding of the universe. One emerging technology is macroscopic mechanical oscillators, devices that are vital in quartz watches, mobile phones, and lasers used in telecommunications. In the quantum realm, macroscopic oscillators could enable ultra-sensitive sensors and components for quantum computing, opening new possibilities for innovation in various industries.

Controlling mechanical oscillators at the quantum level is essential for developing future technologies in and ultra-precise sensing. But controlling them collectively is challenging, as it requires near-perfect units, i.e., identical.

Most research in quantum optomechanics has centered on single oscillators, demonstrating like ground-state cooling and quantum squeezing. But this hasn’t been the case for collective quantum behavior, where many oscillators act as one. Although these collective dynamics are key to creating more powerful quantum systems, they demand exceptionally over multiple oscillators with nearly identical properties.

Colliding top quarks reveal hidden quantum ‘magic’

Queen Mary University of London physicist Professor Chris White, along with his twin brother Professor Martin White from the University of Adelaide, have discovered a surprising connection between the Large Hadron Collider (LHC) and the future of quantum computing.

For decades, scientists have been striving to build quantum computers that leverage the bizarre laws of quantum mechanics to achieve far greater processing power than traditional computers. A recently identified property—amusingly called “magic”—is critical for building these machines, but its generation and enhancement remain a mystery.

For any given quantum system, magic is a measure that tells us how hard it is to calculate on a non-quantum computer. The higher the magic, the more we need quantum computers to describe the behavior. Studying the magic properties of quantum systems generates profound insights into the development and use of quantum computers.

New Type of Magnetism Discovered That Could Make Electronics 1000x Faster

Altermagnetism, a newly imaged class of magnetism, offers potential for the development of faster and more efficient magnetic memory devices, increasing operation speeds by up to a thousand times.

Researchers from the University of Nottingham have demonstrated that this third class of magnetism, combining properties of ferromagnetism and antiferromagnetism, could revolutionize computer memory and reduce environmental impact by decreasing reliance on rare elements.

Altermagnetism’s Unique Properties

Uranus’s Swaying Moons will help Spacecraft Seek Out Hidden Oceans

A new computer model can be used to detect and measure interior oceans on the ice covered moons of Uranus. The model works by analyzing orbital wobbles that would be visible from a passing spacecraft. The research gives engineers and scientists a slide-rule to help them design NASA’s upcoming Uranus Orbiter and Probe mission.

When NASA’s Voyager 2 flew by Uranus in 1986, it captured grainy photographs of large ice-covered moons. Now nearly 40 years later, NASA plans to send another spacecraft to Uranus, this time equipped to see if those icy moons are hiding liquid water oceans.

The mission is still in an early planning stage. But researchers at the University of Texas Institute for Geophysics (UTIG) are preparing for it by building a new computer model that could be used to detect oceans beneath the ice using just the spacecraft’s cameras.

Physicists magnetize a material with light

Physicists have created a new and long-lasting magnetic state in a material, using only light. They used a terahertz laser to stimulate atoms in antiferromagnetic materials, which could advance information processing and memory chip technology.

Lighting Up Hidden Magnetism with Terahertz Pulses: A New Frontier in Quantum Materials.

Imagine being able to control the magnetic properties of materials with flashes of light, unlocking states that last long after the light disappears. This groundbreaking approach to quantum materials is at the forefront of condensed-matter physics, offering tantalizing possibilities for future technologies.

In a recent study, researchers discovered a way to create a long-lived magnetic state in the layered material FePS₃ using terahertz light pulses. Typically, materials return to their original state almost immediately after light-induced changes. However, in this case, the induced magnetization persists for over 2.5 milliseconds—an eternity in the quantum world.

The key lies in the material’s proximity to a critical point—its antiferromagnetic transition temperature, where the usual magnetic order starts to fluctuate dramatically. These fluctuations, akin to a system in delicate balance, seem to amplify the material’s response to light, stabilizing the new magnetic state.

By combining advanced computational methods with experiments, the researchers identified that terahertz light excites specific atomic vibrations, subtly shifting interactions between magnetic atoms. Near the critical temperature, these shifts create conditions favoring a stable, magnetized state.

This discovery isn’t just about extending magnetism’s lifespan; it opens the door to manipulating quantum materials in entirely new ways. Regions near critical points, where order teeters on the edge of chaos, could harbor hidden “metastable” states—potentially leading to breakthroughs in memory devices, sensors, and beyond.