Menu

Blog

Archive for the ‘computing’ category: Page 14

Dec 20, 2024

Uranus’s Swaying Moons will help Spacecraft Seek Out Hidden Oceans

Posted by in categories: computing, space

A new computer model can be used to detect and measure interior oceans on the ice covered moons of Uranus. The model works by analyzing orbital wobbles that would be visible from a passing spacecraft. The research gives engineers and scientists a slide-rule to help them design NASA’s upcoming Uranus Orbiter and Probe mission.

When NASA’s Voyager 2 flew by Uranus in 1986, it captured grainy photographs of large ice-covered moons. Now nearly 40 years later, NASA plans to send another spacecraft to Uranus, this time equipped to see if those icy moons are hiding liquid water oceans.

The mission is still in an early planning stage. But researchers at the University of Texas Institute for Geophysics (UTIG) are preparing for it by building a new computer model that could be used to detect oceans beneath the ice using just the spacecraft’s cameras.

Dec 19, 2024

Physicists magnetize a material with light

Posted by in categories: computing, particle physics, quantum physics

Physicists have created a new and long-lasting magnetic state in a material, using only light. They used a terahertz laser to stimulate atoms in antiferromagnetic materials, which could advance information processing and memory chip technology.

Lighting Up Hidden Magnetism with Terahertz Pulses: A New Frontier in Quantum Materials.

Imagine being able to control the magnetic properties of materials with flashes of light, unlocking states that last long after the light disappears. This groundbreaking approach to quantum materials is at the forefront of condensed-matter physics, offering tantalizing possibilities for future technologies.

Continue reading “Physicists magnetize a material with light” »

Dec 19, 2024

Neuralink Rival’s Biohybrid Implant Connects to the Brain With Living Neurons

Posted by in categories: biotech/medical, computing, neuroscience

While companies like Neuralink have recently provided some flashy demos of what could be achieved by hooking brains up to computers, the technology still has serious limitations preventing wider use.

Non-invasive approaches like electroencephalograms (EEGs) provide only coarse readings of neural signals, limiting their functionality. Directly implanting electrodes in the brain can provide a much clearer connection, but such risky medical procedures are hard to justify for all but the most serious conditions.

California-based startup Science Corporation thinks that an implant using living neurons to connect to the brain could better balance safety and precision. In recent non-peer-reviewed research posted on bioarXiv, the group showed a prototype device could connect with the brains of mice and even let them detect simple light signals.

Dec 19, 2024

Astronaut-on-a-chip: Multi-organ tissue chips simulate space radiation’s impact on human health

Posted by in categories: biotech/medical, computing, health

As astronauts venture further into space, their exposure to harmful radiation rises. Researchers from Columbia University are simulating the effects of space radiation here on Earth to determine its impact on human physiology using multi-organ tissue chips. Their work documents the differential effects seen in tissues after acute and prolonged radiation exposure and identifies multiple genes of interest that could help inform the development of future radioprotective agents.

Their study appears in Advanced Science.

“As deep space exploration continues to unfold, it is vital to understand the physiological damage caused by space radiation to better mitigate its effects. By exposing multi-organ models to simulated cosmic radiation, this study has laid the groundwork to aid in this effort,” commented Jermont Chen, Ph.D., a program director in the Division of Discovery Science and Technology at NIBIB.

Dec 19, 2024

New method maps hundreds of proteins in cell nuclei simultaneously

Posted by in categories: biotech/medical, computing, genetics

Caltech researchers have developed a new method to map the positions of hundreds of DNA-associated proteins within cell nuclei all at the same time. The method, called ChIP–DIP (Chromatin ImmunoPrecipitation Done In Parallel), is a versatile tool for understanding the inner workings of the nucleus during different contexts, such as disease or development.

The research was conducted in the laboratory of Mitchell Guttman, professor of biology, and is described in a paper that appears in the journal Nature Genetics.

Nearly all cells in the human body contain the same DNA, which encodes the blueprint for creating every cell type in the body and directing their activities. Despite having the same , different cell types express unique sets of proteins, allowing for the various cells to perform their specialized functions and to adapt to conditions within their environments. This is possible because of careful regulation within the nucleus of each cell and involves thousands of regulatory proteins that localize to precise places in the nucleus.

Dec 19, 2024

Nonlinear ‘skin effect’ unveiled in antiferromagnetic materials

Posted by in categories: computing, materials

A team of researchers has identified a unique phenomenon, a “skin effect,” in the nonlinear optical responses of antiferromagnetic materials. The research, published in Physical Review Letters, provides new insights into the properties of these materials and their potential applications in advanced technologies.

Nonlinear optical effects occur when light interacts with materials that lack inversion symmetry. It was previously thought that these effects were uniformly distributed throughout the material. However, the research team discovered that in antiferromagnets, the can be concentrated on the surfaces, similar to the “skin effect” seen in conductors, where currents flow primarily on the surface.

In this study, the team developed a self-designed to investigate the nonlinear optical responses in antiferromagnets, using the bulk photovoltaic effect as a representative example. Their results showed that, while the global inversion symmetry was broken, the local deep inside the antiferromagnet was almost untouched.

Dec 19, 2024

Physicists magnetize a material with light: Terahertz technique could improve memory chip design

Posted by in categories: computing, particle physics

MIT physicists have created a new and long-lasting magnetic state in a material, using only light.

In a study that appears in Nature, the researchers report using a —a light source that oscillates more than a trillion times per second—to directly stimulate atoms in an antiferromagnetic material. The laser’s oscillations are tuned to the natural vibrations among the material’s atoms, in a way that shifts the balance of atomic spins toward a new magnetic state.

The results provide a new way to control and switch , which are of interest for their potential to advance information processing and memory chip technology.

Dec 18, 2024

Layer by layer: How simulations help manufacturing of modern displays

Posted by in categories: computing, sustainability

Modern materials must be recyclable and sustainable. Consumer electronics is no exception, with organic light-emitting diodes (OLEDs) taking over modern televisions and portable device displays. However, the development of suitable materials—from the synthesis of molecules to the production of display components—is very time-consuming.

Scientists led by Denis Andrienko of the Max Planck Institute for Polymer Research and Falk May from Display Solutions at Merck have now developed a simulation method that could significantly speed up the development of new materials.

High contrast and are key features of innovative . OLEDs use thin films of organic molecules, i.e. carbon-containing molecules, to achieve these goals.

Dec 18, 2024

ORNL researchers translate foundational uranium science into active nonproliferation solutions

Posted by in categories: biotech/medical, computing, military, nuclear energy, science, terrorism

Through its commitment to international nuclear nonproliferation — a mission focused on limiting the spread of nuclear weapons and sensitive technology while working to promote peaceful use of nuclear science and technology — the United States maintains a constant vigilance aimed at reducing the threat of nuclear and radiological terrorism worldwide.

With extensive research into both basic and applied uranium science, as well as internationally deployed operational solutions, the Department of Energy’s Oak Ridge National Laboratory is uniquely positioned to contribute its comprehensive capabilities toward advancing the U.S. nonproliferation mission.

In 1943, seemingly overnight, ORNL emerged from a rural Tennessee valley as the site of the world’s first continuously operating nuclear reactor, in support of U.S. efforts to end World War II. ORNL’s mission soon shifted into peacetime applications, harnessing nuclear science for medical treatments, power generation and breakthroughs in materials, biological and computational sciences.

Dec 18, 2024

Israel now operating its first domestically built quantum computer

Posted by in categories: computing, quantum physics

First Israeli superconductor-based quantum computer supporting defense and civilian applications is now operational.

Page 14 of 889First1112131415161718Last