Menu

Blog

Archive for the ‘computing’ category: Page 268

Jan 30, 2023

I made a 32bit Computer in Minecraft and ran Tetris on it!

Posted by in categories: computing, mathematics, media & arts, space

Join the ORE community to learn about computational redstone like this at:

Continue reading “I made a 32bit Computer in Minecraft and ran Tetris on it!” »

Jan 30, 2023

The Word “Quantum” Invokes the Notion of Strange Physics and States of Matter

Posted by in categories: computing, quantum physics

I recently learned some new things about quantum materials, states, and computing.


My latest discoveries about the curious world of quantum physics and discoveries that may significantly impact the future.

Jan 30, 2023

Rethinking Relativity: A Surge of Cosmological Inconsistencies Prompts a Reevaluation of Einstein’s Theories

Posted by in categories: computing, physics

After a century of Einsteinian relativistic physics gone unchallenged, Computational Physics assume this demonstrable challenge.

Jan 30, 2023

Top 10 Quantum Computing Companies to Watch Out for in 2023

Posted by in categories: computing, quantum physics

Discover the top 10 quantum computing companies that are leading the way in this cutting-edge technology and investing in quantum computing.

Jan 29, 2023

Scientists discover what is hidden inside a black hole

Posted by in categories: computing, cosmology, quantum physics

A team of researchers used quantum computing and computer learning to describe what is believed to be the interior of a black hole.

Jan 28, 2023

Tiny brain implant allows you to use social media with your mind

Posted by in categories: computing, Elon Musk, neuroscience

Scientists have developed a minuscule brain implant smaller than a human hair which allows people to control computers with their minds. The chip is developed by Precision Neuroscience and works along similar principles to those of Elon Musk’s Neuralink company, though the Precision chip sits on the brain rather than in the tissue.

Jan 27, 2023

Study achieves the coherent manipulation of electron spins in silicon

Posted by in categories: computing, quantum physics

In recent years, many physicists and computer scientists have been working on the development of quantum computing technologies. These technologies are based on qubits, the basic units of quantum information.

In contrast with classical bits, which have a value of 0 or 1, qubits can exist in , so they can have a value of 0 and 1 simultaneously. Qubits can be made of different physical systems, including , (i.e., the spin state of a nucleus), photons, and superconducting circuits.

Electron spins confined in quantum dots (i.e., tiny silicon-based structures) have shown particular promise as qubits, particularly due to their long coherence times, high gate fidelities and compatibility with existing semiconductor manufacturing methods. Coherently controlling multiple , however, can be challenging.

Jan 27, 2023

Quantum physicists determine how to control two quantum light sources rather than one

Posted by in categories: computing, quantum physics

In a new breakthrough, researchers at the University of Copenhagen, in collaboration with Ruhr University Bochum, have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This in turn, opens new doors for companies and others to exploit the technology commercially.

Going from one to two is a minor feat in most contexts. But in the world of , doing so is crucial. For years, researchers around the world have strived to develop stable quantum sources and achieve the phenomenon known as quantum mechanical entanglement—a phenomenon, with nearly sci-fi-like properties, where two light sources can affect each other instantly and potentially across large geographic distances.

Entanglement is the very basis of and central to the development of an efficient quantum computer.

Jan 27, 2023

Researchers find ways to improve the storage time of quantum information in a spin rich material

Posted by in categories: chemistry, computing, quantum physics, security

An international team of scientists have demonstrated a leap in preserving the quantum coherence of quantum dot spin qubits as part of the global push for practical quantum networks and quantum computers.

These technologies will be transformative to a broad range of industries and research efforts: from the security of information transfer, through the search for materials and chemicals with novel properties, to measurements of fundamental physical phenomena requiring precise time synchronization among the sensors.

Spin-photon interfaces are elementary building blocks for that allow converting stationary quantum information (such as the quantum state of an ion or a solid-state spin qubit) into light, namely photons, that can be distributed over large distances. A major challenge is to find an interface that is both good at storing quantum information and efficient at converting it into light.

Jan 26, 2023

Cognition after the representation war (part 2) — 4E Cognition

Posted by in categories: computing, neuroscience

Through the issue of mental representation addressed in the previous article, it is possible to get a first idea about the theoretical discontinuity between traditional cognitive science and more recent approaches gathered under the umbrella of so-called 4E Cognition. In fact, in many cases those latter reflect — directly or in a collateral way — the attempt to overcome the problem of representation in human cognition, even thought, as we’re going to say, this doesn’t entail a unite consensus at all.

4E Cognition has not to be seen as a specific and well-defined theoretical system, rather, it is a term referring to all those works (hypothesis, theories, experiments, etc.) which deviate from the traditional representational-computational model of cognition (see part 1), taking a dynamic and enactive approach, namely, conceiving cognition as embodied, embedded, enactive and extended (that’s why 4E). In a nutshell, mental states and cognitive processes would be: embodied when they are partly constituted by bodily processes; embedded when there is an essential causal dependence between such states and processes and the environment; enacted when the actions of the subject can partly constitute these states and processes; and extended when objects or processes in the environment can partly constitute those states and processes [4].

Here you can find a quick conversational introduction to 4E cognition made by professor Shaun Gallagher: