Menu

Blog

Archive for the ‘computing’ category: Page 285

Jan 9, 2023

Microsoft acquires Fungible, a maker of data processing units, to bolster Azure

Posted by in categories: computing, security

In December, reports suggested that Microsoft had acquired Fungible, a startup fabricating a type of data center hardware known as a data processing unit (DPU), for around $190 million. Today, Microsoft confirmed the acquisition but not the purchase price, saying that it plans to use Fungible’s tech and team to deliver “multiple DPU solutions, network innovation and hardware systems advancements.”

“Fungible’s technologies help enable high-performance, scalable, disaggregated, scaled-out data center infrastructure with reliability and security,” Girish Bablani, the CVP of Microsoft’s Azure Core division, wrote in a blog post. “Today’s announcement further signals Microsoft’s commitment to long-term differentiated investments in our data center infrastructure, which enhances our broad range of technologies and offerings including offloading, improving latency, increasing data center server density, optimizing energy efficiency and reducing costs.”

A DPU is a dedicated piece of hardware designed to handle certain data processing tasks, including security and network routing for data traffic. The approach is intended to help reduce the load on CPUs and GPUs for core computing tasks related to a given workload.

Jan 9, 2023

Are quantum computers about to break online privacy?

Posted by in categories: computing, encryption, information science, quantum physics

A new algorithm is probably not efficient enough to crack current encryption keys — but that’s no reason for complacency, researchers say.

Jan 9, 2023

New nanowire sensors are the next step in the Internet of Things

Posted by in categories: biotech/medical, computing, internet, nanotechnology

A new miniscule nitrogen dioxide sensor could help protect the environment from vehicle pollutants that cause lung disease and acid rain.

Researchers from TMOS, the Australian Research Council Center of Excellence for Transformative Meta-Optical Systems have developed a sensor made from an array of nanowires, in a square one fifth of a millimeter per side, which means it could be easily incorporated into a silicon chip.

In research published in the latest issue of Advanced Materials, Ph.D. scholar at the Center’s Australian National University team and lead author Shiyu Wei describes the sensor as requiring no , as it runs on its own solar powered generator.

Jan 8, 2023

Physicists just discovered a new type of quantum entanglement

Posted by in categories: computing, particle physics, quantum physics

For the first time, physicists at the Brookhaven National Laboratory have come across a novel type of quantum entanglement, the extremely bizarre phenomenon that occurs when a pair of particles remain connected even when separated by galactic distances. Thanks to this effect, the researchers were also able to peer inside the atomic nuclei with unprecedented detail.

Quantum entanglement is a strange and fascinating phenomenon that has puzzled scientists for decades. It occurs when pairs of particles become so closely connected that one can no longer be described without the other, no matter how far apart they may be. Even more strange, changing one will instantly trigger a change in its partner, even if it was on the other side of the universe. In theory, this effect would enable faster-than-light communication if you encode the changes in these states with 1s and 0s.

This concept may sound impossible to us, as it goes against our classical understanding of physics, and it even unnerved Albert Einstein, who referred to it as “spooky action at a distance.” However, numerous experiments have consistently proven the existence of quantum entanglement by manipulating the properties of the entangled particles, such as their spin or polarization, and observing the effects on the other particle. Today, quantum entanglement forms the backbone of emerging technologies such as quantum computers and networks.

Jan 8, 2023

Quantum money that uses the mathematics of knots could be unforgeable

Posted by in categories: computing, economics, mathematics, quantum physics

Quantum money underpinned by the mathematics of knots could be impossible to forge.

Jan 8, 2023

Ep. 102: Genetic engineering and the biological basis of intelligence. | Steven Hsu

Posted by in categories: bioengineering, biotech/medical, computing, genetics, mathematics

Since the discovery of genetics, people have dreamed of being able to correct diseases, select traits in children before birth, and build better human beings. Naturally, many serious technical and ethical questions surround this endeavor. Luckily, tonights’ guest is as good a guide as we could hope to have.

Dr. Steve Hsu is Professor of Theoretical Physics and of Computational Mathematics, Science, and Engineering at Michigan State University. He has done extensive research in the field of computational genomics, and is the founder of several startups.

#geneticengineering #intelligence

Jan 8, 2023

Mojo Vision puts contact lens production ‘on hold’ as it lays off 75% of staff

Posted by in categories: augmented reality, biotech/medical, computing, economics

We’ve met with Mojo Vision for several CESes, watching the startup’s AR contact lenses develop, year by year. These sorts of things take a lot of time and money, of course — and these days it seems increasingly difficult to find either. Today, the California-based firm announced that it is “decelerating” work on the Mojo Lens, citing, “significant challenges in raising capital.”

In an announcement posted to it site, CEO Drew Perkins blames insurmountable headwinds, including the bad economy and the “yet-to-be proven market potential for advanced AR products” in its ability to raise the necessary funding required to keep the project afloat.

“Although we haven’t had the chance yet to see it ship and to reach its full potential in the marketplace, we have proven that what was once considered science fiction can be developed into a technical reality,” Perkins writes. “Even though the pursuit of our vision for Invisible Computing is on hold for now, we strongly believe that there will be a future market for Mojo Lens and expect to accelerate it when the time is right.”

Jan 8, 2023

Chinese Researchers Claim They Cracked Encryption With Quantum Computers

Posted by in categories: computing, encryption, quantum physics

Skeptical technology experts believe the declaration is a hoax intended to cause panic.

Jan 7, 2023

Interaction-free, single-pixel quantum imaging with undetected photons

Posted by in categories: biological, computing, quantum physics

Over the past few decades, several imaging protocols based on quantum technologies have been realized1,2, which have expanded the application capabilities of optical imaging. These include ghost imaging (GI)3,4, quantum imaging with undetected photons (QIUP)5, and interaction-free measurements (IFMs)6,7. The quantum GI scheme relies on the spatial correlations of entangled photon pairs and requires two-photon coincident measurements. Furthermore, ghost imaging can also be realized with classical intensity-fluctuation correlations8. Later, various single-pixel imaging (SPI) protocols were proposed9,10,11,12,13, where the spatial correlations are not between two photons but between one photon and a programmable mask held in a spatial light modulator (SLM).

In contrast to modern digital cameras employing array sensors to capture images, SPI use a sequence of masks to interrogate the scene along with the correlated intensity measurements by a single-pixel detector. The spatially resolved masks are usually generated by computer and displayed by SLM. Combined with compressive techniques10, the number of sampling measurements is fewer than the total number of pixels in the image. Thereby, SPI can reduce the data processing requirement, and shows potential capability for high dimensional sensing12. On the other hand, the modern single-photon detector is featured by improved detection efficiency, lower dark counts, and faster timing response14. Such enhancements have significance to applying SPI into weak signal detection scenarios, such as scattering medium imaging or long-range 3D imaging11.

The QIUP scheme is based on induced coherence (IC), which was first proposed by Zou, Wang, and Mandel15. They used two photon sources to generate photon pairs. By overlapping path of two sources for one photon (idler)15,16,17 and establishing the so-called path identity18,19, there is no information about the origin of the other photon (signal). Thus, the signal photon is in the superposition state of being created in either of the sources. The phase and transmissivity of the idler photon are encoded in the interference of the signal photon. Inserting one object onto the idler path between two sources, one can obtain images exclusively with the signal photons which have no interaction with the object5. In contrast to GI, QIUP does not involve the detection of the photon illuminating the object or any coincidence measurement. This is an advantage of QIUP, as the wavelength of the detected photon can be chosen independently from that of the photon interacting with the object5. This concept was further explored in infrared (IR) spectroscopy20, optical coherence tomography21,22, mid-IR imaging23,24,25, terahertz (THz) sensing26, biological microscopy27, and holography28. Recently, the related SU(1,1) interferometer has been investigated and employed in quantum-enhanced metrology29,30,31,32,33.

Jan 7, 2023

Quantum computers can break major encryption method, researchers claim

Posted by in categories: computing, encryption, quantum physics

It has long been known that one day quantum computers will probably be able to crack the RSA encryption method we use to keep data safe, but a team of researchers is now claiming it is already possible, while others say the results require more scrutiny.