Menu

Blog

Archive for the ‘computing’ category: Page 289

Jan 12, 2023

LED Smart Lighting System Based on Quantum Dots More Accurately Reproduces Daylight

Posted by in categories: computing, nanotechnology, quantum physics

Year 2022 face_with_colon_three


Researchers have designed smart, color-controllable white light devices from quantum dots – tiny semiconductors just a few billionths of a meter in size – which are more efficient and have better color saturation than standard LEDs, and can dynamically reproduce daylight conditions in a single light.

The researchers, from the University of Cambridge, designed the next-generation smart lighting system using a combination of nanotechnology, color science, advanced computational methods, electronics, and a unique fabrication process.

Continue reading “LED Smart Lighting System Based on Quantum Dots More Accurately Reproduces Daylight” »

Jan 12, 2023

New spin control method brings billion-qubit quantum chips closer

Posted by in categories: computing, nanotechnology, quantum physics

Australian engineers have discovered a new way of precisely controlling single electrons nestled in quantum dots that run logic gates. What’s more, the new mechanism is less bulky and requires fewer parts, which could prove essential to making large-scale silicon quantum computers a reality.

The serendipitous discovery, made by engineers at the quantum computing start-up Diraq and UNSW Sydney, is detailed in the journal Nature Nanotechnology.

Continue reading “New spin control method brings billion-qubit quantum chips closer” »

Jan 12, 2023

A method to reliably fabricate transition metal dichalcogenide field-effect transistors on a wafer-scale

Posted by in categories: computing, materials

Electronics engineers are continuously trying to develop thinner, more efficient and better performing transistors, the semiconductor devices at the core of most modern electronics. To do this, they have been evaluating the potential of a broad range of materials.

Transition metal dichalcogenides (TMDs), compounds based on and chalcogen elements, have very attractive electronic and that make them promising candidates for the development of future generations of transistors. Most notably, they have an atomically thin structure with no dangling bonds and a bandgap similar to that of silicon.

Despite their advantageous characteristics, TMDs have not yet been used to create transistors on a large scale. The main reason for this is the weak adhesion energy at the interface between these materials and substrates, which makes their widespread fabrication challenging.

Jan 12, 2023

China’s new quantum code-breaking algorithm raises concerns in the US

Posted by in categories: computing, encryption, information science, quantum physics

The new algorithm could render mainstream encryption powerless within years.

Chinese researchers claim to have introduced a new code-breaking algorithm that, if successful, could render mainstream encryption powerless within years rather than decades.

The team, led by Professor Long Guilu of Tsinghua University, proclaimed that a modest quantum computer constructed with currently available technology could run their algorithm, South China Morning Post (SCMP) reported on Wednesday.

Jan 12, 2023

Integrated photonic circuits could help close the ‘terahertz gap’

Posted by in categories: computing, engineering

EPFL researchers have collaborated with colleagues at Harvard and ETH Zurich on a new thin-film circuit that, when connected to a laser beam, produces finely tailorable terahertz-frequency waves. The device opens up a world of potential applications in optics and telecommunications.

Researchers led by Cristina Benea-Chelmus in the Laboratory of Hybrid Photonics (HYLAB) in EPFL’s School of Engineering have taken a big step toward successfully exploiting the so-called terahertz gap, which lies between about 300 to 30,000 gigahertz (0.3 to 30 THz) on the electromagnetic spectrum. This range is currently something of a technological dead zone, describing frequencies that are too fast for today’s electronics and telecommunications devices, but too slow for optics and imaging applications.

Now, thanks to an extremely thin chip with an integrated photonic circuit made of , the HYLAB researchers and colleagues at ETH Zurich and Harvard University have succeeded not just in producing terahertz waves, but in engineering a solution for custom-tailoring their frequency, wavelength, amplitude, and phase.

Jan 12, 2023

The Quantum Zeno Effect: From Motionless Arrows to Entangled Freezers

Posted by in categories: computing, quantum physics

Long before we had quantum computers, classical computers, or even calculus, an ancient Greek philosopher known as Zeno of Elea used thought experiments to probe apparent paradoxes. Zeno imagined an arrow flying through the air. At each instant of time, he reasoned, the arrow is stationary. If the arrow’s trajectory is entirely composed of stationary instants, how can the arrow ever move through space? Motion is impossible!

Zeno’s ancient arrow paradox has since evolved into a quantum thought experiment, “the quantum Zeno effect,” whereby we can freeze the state of quantum systems by continuously observing them. In the latest installment of our Quantum Paradoxes content series, I explain the quantum Zeno effect, and show how we can test it out using Qiskit on quantum computers. Read on to find out how this counterintuitive quantum freezing works, and how to create your own quantum freezer game — which even works with entangled qubits! All the code you need is in this Jupyter Notebook, and you’ll also find a detailed explanation in our latest Quantum Paradoxes video.

Continue reading “The Quantum Zeno Effect: From Motionless Arrows to Entangled Freezers” »

Jan 12, 2023

This 3D-printed home is made from wood chips and sawdust

Posted by in categories: 3D printing, computing

A prototype house called BioHome3D has been developed by researchers using 3D printing technology. It is made of a mix of wood waste and bio-resins.

Jan 11, 2023

Scientists detect superheavy neutron star that existed for only a fraction of a second

Posted by in categories: computing, cosmology

A mix of computer simulations and gamma-ray burst observations shed new light on merging neutron stars.

Astronomers trawled through archival observations of short gamma-ray bursts (GRBs) and detected the rapid evolution of two merging neutron stars into a superheavy neutron star, which then collapsed into a black hole.

Continue reading “Scientists detect superheavy neutron star that existed for only a fraction of a second” »

Jan 11, 2023

Apple Expected to Use Own Wi-Fi Chip in 2025 iPhone

Posted by in categories: computing, mobile phones

Broadcom will lose an order for millions of chips if Apple manages to have its own wireless chip ready in time for the iPhone 17.

Jan 11, 2023

Ep. 120: Quantum computing explained

Posted by in categories: computing, quantum physics

Quantum computing expert and software engineer Anastasia Marchenkova discusses what’s next in quantum computing.