Menu

Blog

Archive for the ‘computing’ category: Page 339

Aug 21, 2022

Tiny Magnets Could Hold the Secret to Miniaturizable Quantum Computers

Posted by in categories: computing, quantum physics

In new research from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, scientists have achieved efficient quantum coupling between two distant magnetic devices, which can host a certain type of magnetic excitations called magnons. These excitations happen when an electric current generates a magnetic field. Coupling allows magnons to exchange energy and information. This kind of coupling may be useful for creating new quantum information technology devices.

“Remote coupling of magnons is the first step, or almost a prerequisite, for doing quantum work with magnetic systems,” said Argonne senior scientist Valentine Novosad, an author of the study. “We show the ability for these magnons to communicate instantly with each other at a distance.”

Aug 21, 2022

Engineers fabricate a chip-free, wireless, electronic ‘skin’

Posted by in categories: computing, mobile phones, wearables

Wearable sensors are ubiquitous thanks to wireless technology that enables a person’s glucose concentrations, blood pressure, heart rate, and activity levels to be transmitted seamlessly from sensor to smartphone for further analysis.

Most wireless sensors today communicate via embedded Bluetooth chips that are themselves powered by small batteries. But these conventional chips and power sources will likely be too bulky for next-generation sensors, which are taking on smaller, thinner, more flexible forms.

Now MIT engineers have devised a new kind of that communicates wirelessly without requiring onboard chips or batteries. Their design, detailed in the journal Science, opens a path toward chip-free wireless sensors.

Aug 20, 2022

Chinese Researchers Report on Highly Efficient Process for Entangling Photons

Posted by in categories: computing, particle physics, quantum physics

A team of Chinese scientists report on a new method for entangling photons that they say could make quantum networks and quantum computing more practical, according to the South China Post.

In a study published in Nature Photonics, the team from the University of Science and Technology of China said that the new way to produce entangled photons is extremely efficient. The work was led by Jian-Wei Pan, one of the world’s leading quantum researcher from the Hefei National Research Center for Physical Sciences at the Microscale, the University of Science and Technology of China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China.

Entangled photons are needed for certain forms of quantum communication and computing. These technologies require the ability to efficiently produce large numbers of particles — in this case, photons — that can remain entangled even when separated by vast distances to process and protect information. Specifically, the technology could be used in quantum relays that are used in long-distance, attack-proof quantum communication, the newspaper reports.

Aug 20, 2022

Tesla driver found the perfect place to keep his car key — implanted in his hand

Posted by in categories: computing, cyborgs, mobile phones, sustainability, transportation

A Tesla driver can now unlock his car without using his smartphone. Thanks to a chip implanted in his hand, he will never lose his keys again.

Aug 20, 2022

Brain — Computer Interface. How this new technology will change the word

Posted by in categories: biotech/medical, computing, neuroscience

Discussion panel with:
- Swati Chavda, a science fiction writer and former brain surgeon.
- Ron S. Friedman, a science fiction writer and an Information Technologies Specialist.

August 13th 2022, When Words Collide festival.

Continue reading “Brain — Computer Interface. How this new technology will change the word” »

Aug 20, 2022

Who Gets to Work in the Digital Economy?

Posted by in categories: bioengineering, biotech/medical, business, computing, economics, employment, finance, internet

If the combination of Covid-19 and remote work technologies like Zoom have undercut the role of cities in economic life, what might an even more robust technology like the metaverse do? Will it finally be the big upheaval that obliterates the role of cities and density? To paraphrase Airbnb CEO Brian Chesky: The place to be was Silicon Valley. It feels like now the place to be is the internet.

The simple answer is no, and for a basic reason. Wave after wave of technological innovation — the telegraph, the streetcar, the telephone, the car, the airplane, the internet, and more — have brought predictions of the demise of physical location and the death of cities.


Remote work has become commonplace since the beginning of the Covid-19 pandemic. But the focus on daily remote work arrangements may miss a larger opportunity that the pandemic has unearthed: the possibility of a substantially increased labor pool for digital economy work. To measure interest in digital economy jobs, defined as jobs within the business, finance, art, science, information technology, and architecture and engineering sectors, the authors conducted extensive analyses of job searches on the Bing search engine, which accounts for more than a quarter of all desktop searches in the U.S. They found that, not only did searches for digital economy jobs increase since the beginning of the pandemic, but those searches also became less geographically concentrated. The single biggest societal consequence of the dual trends of corporate acceptance of remote work and people’s increased interest in digital economy jobs is the potential geographic spread of opportunity.

Continue reading “Who Gets to Work in the Digital Economy?” »

Aug 20, 2022

Neuralink’s brain-computer interface demo shows a monkey playing Pong

Posted by in categories: biotech/medical, computing, Elon Musk, finance, neuroscience

Neuralink, a company co-founded by Elon Musk, has been working on an implantable brain-machine interface since 2016. While it previously demonstrated its progress by showing a Macaque monkey controlling the cursor.

It’s unclear what kind of deal Musk has offered — whether it’s a collaboration or a financial investment —since none of the players responded or confirmed the report with the news organization.


Elon Musk’s last update on Neuralink — his company that is working on technology that will connect the human brain directly to a computer — featured a pig with one of its chips implanted in its brain. Now Neuralink is demonstrating its progress by showing a Macaque with one of the Link chips playing Pong. At first using “Pager” is shown using a joystick, and then eventually, according to the narration, using only its mind via the wireless connection.

Continue reading “Neuralink’s brain-computer interface demo shows a monkey playing Pong” »

Aug 20, 2022

Quantum Computing Will Be Bigger Than the Discovery of Fire!

Posted by in categories: computing, quantum physics

[Editor’s note: “Quantum Computing Will Be Bigger Than the Discovery of Fire!” was previously published in June 2022. It has since been updated to include the most relevant information available.]

It’s commonly appreciated that the discovery of fire was the most profound revolution in human history. And yesterday, I read that a major director at Bank of America (BAC) thinks a technology that hardly anyone is talking about these days could be more critical for humankind than fire!

Aug 20, 2022

Computer made from liquid crystals would ripple with calculations

Posted by in categories: computing, electronics

Liquid crystals consist of rod-shaped molecules that slosh around like a fluid, and in those that are nematic the molecules are mostly parallel to each other. For devices like TV screens, the odd molecule that faces the wrong way has to be removed during the manufacturing process, but these defects are key for building a liquid crystal computer, says Kos.

In ordinary computers, information is stored as a series of bits, electronic versions of 1s and 0s. In Kos and Dunkel’s liquid crystal computer, the information would instead be translated into a series of defective orientations. A liquid crystal defect could encode a different value for every different degree of misalignment with other molecules.

Electric fields could then be used to manipulate the molecules to perform basic calculations, similar to how simple circuits called logic gates work in an ordinary computer. Calculations on the proposed computer would appear as ripples spreading through the liquid.

Aug 19, 2022

Engineers fabricate a chip-free, wireless electronic “skin”

Posted by in categories: computing, entertainment

The team’s sensor design is a form of electronic skin, or “e-skin” — a flexible, semiconducting film that conforms to the skin like electronic Scotch tape. The heart of the sensor is an ultrathin, high-quality film of gallium nitride, a material that is known for its piezoelectric properties, meaning that it can both produce an electrical signal in response to mechanical strain and mechanically vibrate in response to an electrical impulse.

The researchers found they could harness gallium nitride’s two-way piezoelectric properties and use the material simultaneously for both sensing and wireless communication.

In their new study, the team produced pure, single-crystalline samples of gallium nitride, which they paired with a conducting layer of gold to boost any incoming or outgoing electrical signal. They showed that the device was sensitive enough to vibrate in response to a person’s heartbeat, as well as the salt in their sweat, and that the material’s vibrations generated an electrical signal that could be read by a nearby receiver. In this way, the device was able to wirelessly transmit sensing information, without the need for a chip or battery.