Menu

Blog

Archive for the ‘computing’ category: Page 391

Apr 18, 2022

Scientists develop new computational approach to reduce noise in X-ray data

Posted by in categories: computing, nanotechnology

Scientists from the National Synchrotron Light Source II (NSLS-II) and Computational Science Initiative (CSI) at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have helped to solve a common problem in synchrotron X-ray experiments: reducing the noise, or meaningless information, present in data. Their work aims to improve the efficiency and accuracy of X-ray studies at NSLS-II, with the goal of enhancing scientists’ overall research experience at the facility.

NSLS-II, a DOE Office of Science user facility, produces X-ray beams for the study of a huge variety of samples, from potential new battery materials to plants that can remediate contaminated soil. Researchers from across the nation and around the globe come to NSLS-II to investigate their samples using X-rays, collecting huge amounts of data in the process. One of the many X-ray techniques available at NSLS-II to visiting researchers is X-ray photon correlation spectroscopy (XPCS). XPCS is typically used to study material behaviors that are time-dependent and take place at the nanoscale and below, such as the dynamics between and within structural features, like tiny grains. XPCS has been used, for example, to study magnetism in advanced computing materials and structural changes in polymers (plastics).

While XPCS is a powerful technique for gathering information, the quality of the data collected and range of materials that can be studied is limited by the “flux” of the XPCS X-ray beam. Flux is a measure of the number of X-rays passing through a given area at a point in time, and high flux can lead to too much “noise” in the data, masking the signal the scientists are seeking. Efforts to reduce this noise have been successful for certain experimental setups. But for some types of XPCS experiments, achieving a more reasonable signal-to-noise ratio is a big challenge.

Apr 17, 2022

Graphene-hBN breakthrough to spur new LEDs, quantum computing

Posted by in categories: computing, quantum physics

In a discovery that could speed research into next-generation electronics and LED devices, a University of Michigan research team has developed the first reliable, scalable method for growing single layers of hexagonal boron nitride on graphene.

The process, which can produce large sheets of high-quality hBN with the widely used molecular-beam epitaxy process, is detailed in a study in Advanced Materials.

Continue reading “Graphene-hBN breakthrough to spur new LEDs, quantum computing” »

Apr 17, 2022

If Fungi Could Talk: Study Suggests Fungi Could Communicate in Structure Comparable to Humans

Posted by in category: computing

Mushrooms could be communicating in a structure that resembles human language, suggests a study published in the Royal Society Open Science.

Professor Andrew Adamatzky analysed the electrical signals in fungi and found patterns that have a structural similarity to English and Swedish languages at the University of the West of England’s Unconventional Computing Laboratory. The hope is to better understand how information is transferred and processed in mycelium networks, and to one day create fungi-based computing devices.

Apr 17, 2022

Mojo Vision’s New Contact Lens Brings Seamless Augmented Reality a Step Closer

Posted by in categories: augmented reality, biotech/medical, computing

Around the rim of the lens is an array of other electronics, including a custom-designed chip with a radio that streams content to the display and a variety of sensors, including an accelerometer, gyroscope, and magnetometer for tracking the user’s eye movements. This eye tracking capability not only ensures that AR imagery holds still as the user looks around, but also makes it possible to control the device through eye movements alone.

Despite their efforts to pack as much into the lens as possible, it won’t be a stand-alone piece of equipment. Most of the computing power required to run AR applications will be contained in a companion device worn around the neck, which will stream the content to the lens wirelessly.

The lens also hasn’t yet been cleared by the FDA for human use, so early demonstrations involve looking through a lens on a stick just in front of the eye. At present it is only capable of producing images in a green monochrome. But according to CNET , the device allows a user to select a variety of apps arranged in a ring around the periphery of their field of vision using nothing more than their gaze. These make it possible to do everything from checking flight information to using a compass to navigate and track fitness data like heart rate and lap number.

Apr 17, 2022

Quantum computing: The benefits of being quantum-ready

Posted by in categories: computing, education, quantum physics

To fully embrace the benefits of quantum computing in the future, we need to focus on education and workforce development and become quantum-ready today.


The 13-year-old daughter of a friend visiting my workplace — the IBM Research lab in Zurich — seemed puzzled. She knew I worked in a research lab and I that work with computers, but the computers she knows don’t typically resemble the chandelier-like structure that hung from the ceiling in front of us.

Yet, it is a computer – a quantum computer. And while someone in their early teens right now can be excused for not knowing what a quantum computer is, I would very much like that to change.

Apr 16, 2022

New software enables diesel engines to run on alternative fuels

Posted by in categories: computing, neuroscience

Illinois Tech designs new engine brains that could reduce emissions.

Apr 15, 2022

Brain Implant Allows Completely Locked-In Patient To Communicate

Posted by in categories: biotech/medical, computing, neuroscience

A man left in a completely locked-in state by amyotrophic lateral sclerosis (ALS) has been able to communicate with his family and carers thanks to an implant. The device helped the patient, who was unable to move any muscles or even open his eyes, contact the outside world using only his brain activity.

Rapid neurodegeneration

In the last decade, combinations of brain implants and brain-computer interfaces (BCI) have enabled people with severe brain injuries or neurodegeneration to regain communicative ability. The new study, published in Nature Communications by an international research team, is the first to be used successfully in a patient with such severe neurodegeneration.

Apr 15, 2022

Ancient Namibian stone could hold key to future quantum computers

Posted by in categories: computing, particle physics, quantum physics

A special form of light made using an ancient Namibian gemstone could be the key to new light-based quantum computers, which could solve long-held scientific mysteries, according to new research led by the University of St Andrews.

The research, conducted in collaboration with scientists at Harvard University in the US, Macquarie University in Australia and Aarhus University in Denmark and published in Nature Materials, used a naturally mined cuprous oxide (Cu2O) gemstone from Namibia to produce Rydberg polaritons, the largest hybrid particles of light and matter ever created.

Rydberg polaritons switch continually from light to matter and back again. In Rydberg polaritons, light and matter are like two sides of a coin, and the matter side is what makes polaritons interact with each other.

Apr 15, 2022

Enterprise serverless computing providers: Comparing the top contenders

Posted by in categories: business, computing

If your business needs backend services for its websites and apps, IT pros say these are the serverless computing providers to turn to.

Apr 15, 2022

Molecular thermal energy system can store solar energy for 18 years

Posted by in categories: computing, solar power, sustainability

Developed by a Chinese-Swedish research group, the device is an ultra-thin chip that could be integrated into electronics such as headphones, smartwatches and telephones. It combines a Molecular Solar Thermal Energy Storage System (MOST) with a micro-fabricated system that includes a thermoelectric generator (TEG) with a low-dimensional material-based microelectromechanical system (MEMS).