Menu

Blog

Archive for the ‘computing’ category: Page 545

Jun 19, 2020

Scientists built a new quantum computer. It’s made of five atoms and “self-destroys” after each use

Posted by in categories: computing, information science, particle physics, quantum physics

Scientists managed another breakthrough. They built a quantum computer that can execute the difficult Shor’s algorithm. It’s just five atoms big, but the experts claim it will be easy to scale it up.

Jun 19, 2020

DNA data storage takes a leap forward with ‘DORIS’

Posted by in category: computing

A new system called DORIS fixes one major problem with making DNA data storage widespread, including letting users “delete” data as well as store it.

Jun 18, 2020

Quantum computers now have a new universal language

Posted by in categories: computing, quantum physics

The launch of QUA will let researchers run even the most complex programs combined with classical processing, says creator Quantum Machines.

Jun 18, 2020

Apple A13 For iPhone 11 Has 8.5 Billion Transistors, Quad-Core GPU

Posted by in categories: computing, mobile phones

Apple’s A13 proceessor for the iPhone 11 lineup featurs 8.5 billion transistors and 20% performance improvements all around. Take a look!

Jun 18, 2020

Honeywell will let other companies tap into its quantum computer

Posted by in categories: computing, quantum physics

Honeywell’s enterprise customers can now access the company’s 64 quantum volume computer.

Jun 17, 2020

Simultaneous nodal superconductivity and broken time-reversal symmetry in CaPtAs

Posted by in categories: computing, quantum physics

In the vast majority of superconducting materials, Cooper pairs have what is known as even parity, which essentially means that their wave function does not change when electrons swap spatial coordinates. Conversely, some unconventional superconductors have been found to contain odd-parity Cooper pairs. This quality makes these unconventional materials particularly promising for quantum computing applications.

Past studies have predicted that noncentrosymmetric , which have a crystal structure with no center of inversion, could exhibit unique and unusual properties. In recent years, noncentrosymmetric superconductors have become a popular topic of research due to the structure of the Cooper pairs contained within them, which have a mixture of odd and even parity.

CaPtAs is a new noncentrosymmetric superconductor discovered by researchers at Zhejiang University. Together with scientists at the Paul Scherrer Institut and other institutes worldwide, these researchers have recently carried out a study investigating in this compound. Their paper, published in Physical Review Letters, offers evidence that in its superconducting state, CaPtAs simultaneously exhibits both nodal superconductivity and broken time-reversal symmetry (TRS).

Jun 17, 2020

Elon Musk promises to have the Neuralink brain chip in a human this year

Posted by in categories: computing, Elon Musk, neuroscience

Elon Musk announced that his secretive brain-computer interface startup Neuralink is working on an “awesome” update of his brain implant technology.

Jun 16, 2020

Digitize your dog into a computer game

Posted by in categories: biotech/medical, computing, entertainment

Researchers from the University of Bath have developed motion capture technology that enables you to digitize your dog without a motion capture suit and using only one camera.

The software could be used for a wide range of purposes, from helping vets diagnose lameness and monitoring recovery of their canine patients, to entertainment applications such as making it easier to put digital representations of into movies and video games.

Motion capture technology is widely used in the , where actors wear a suit dotted with white markers which are then precisely tracked in 3D space by multiple cameras taking images from different angles. Movement data can then be transferred onto a digital character for use in films or computer games.

Jun 16, 2020

Quantum Satellite Links Extend More Than 1,000 Kilometers

Posted by in categories: computing, encryption, internet, quantum physics

Now, the same researchers have achieved their goal of entanglement-based quantum cryptography using the Micius satellite. The scientists, who detailed their findings online in the 15 June edition of the journal Nature, say they again connected two observatories separated by 1,120 kilometers. But this time, the collection efficiency of the links was improved by up to four-fold, which resulted in data rates of about 0.12 bits per second.


A space-based, virtually unhackable quantum Internet may be one step closer to reality due to satellite experiments that linked ground stations more than 1,000 kilometers apart, a new study finds.

Quantum physics makes a strange effect known as entanglement possible. Essentially, two or more particles such as photons that get linked or “entangled” can influence each other simultaneously no matter how far apart they are.

Continue reading “Quantum Satellite Links Extend More Than 1,000 Kilometers” »

Jun 15, 2020

Researchers create first room-temp ‘magnon switch’ with industrially useful properties

Posted by in categories: computing, materials

Scientists at the National Institute of Standards and Technology (NIST) and the Massachusetts Institute of Technology (MIT) have demonstrated a potentially new way to make switches inside a computer’s processing chips, enabling them to use less energy and radiate less heat.

The team has developed a practical technique for controlling magnons, which are essentially waves that travel through and can carry information. To use magnons for information processing requires a switching mechanism that can control the transmission of a magnon signal through the device.

While other labs have created systems that carry and control magnons, the team’s approach brings two important firsts: Its elements can be built on silicon rather than exotic and expensive substrates, as other approaches have demanded. It also operates efficiently at room temperature, rather than requiring refrigeration. For these and other reasons, this new approach might be more readily employed by .