Menu

Blog

Archive for the ‘computing’ category: Page 6

Jan 12, 2025

With NSF grant, Yale and industry team up to harness quantum’s potential

Posted by in categories: computing, quantum physics

A Yale-led project that aims to develop quantum technology into practical applications has been awarded a prestigious grant from the National Science Foundation (NSF).

Erasure Qubits and Dynamic Circuits for Quantum Advantage (ERASE), a pilot project led by Yale physicist Steven Girvin, is a collaboration between academia and an industrial hardware partner, Quantum Circuits, Inc. (QCI), a Connecticut-based company that aims to bring to market the first practical quantum computers.

Jan 12, 2025

$1 billion, 131-acre tech, data center complex planned for Texas

Posted by in categories: computing, internet, space

Texas’ growth as a technology and data homebase isn’t slowing down anytime soon. This week, three firms announced the development of a massive, $1 billion data center being planned for North Texas.

Dallas-based fiber internet provider Gigabit Fiber, real estate firm Lincoln Property Co. and investment firm Tradition Holdings are reportedly partnering on the data center and tech space called GigaPop, set for a 131-acre tract of land in Red Oak, about 18 miles south of Dallas. Gigabit Fiber will begin construction of the 800,000-square-foot site in early 2025, starting with a 7,500-square-foot space.

Jan 11, 2025

TSMC’s Arizona Fab 21 is already making 4nm chips

Posted by in category: computing

It was alleged to be for AMD and Apple, but Raimondo did not say that.

Jan 11, 2025

Single-atom metal layer reveals unexpected spin-polarized current control with light

Posted by in categories: computing, particle physics

Researchers at the University of Tokyo have demonstrated that the direction of the spin-polarized current can be restricted to only one direction in a single-atom layer of a thallium-lead alloy when irradiated at room temperature. The discovery defies conventions: single-atom layers have been thought to be almost completely transparent, in other words, negligibly absorbing or interacting with light.

The one-directional flow of the current observed in this study makes possible functionality beyond ordinary diodes, paving the way for more environmentally friendly data storage, such as ultra-fine two-dimensional spintronic devices, in the future. The findings are published in the journal ACS Nano.

Diodes are fundamental building blocks of modern electronics by restricting the flow of currents to only one direction. However, the thinner the device, the more complicated it becomes to design and manufacture these functional components. Thus, demonstrating phenomena that might make such developmental feats possible is critical. Spintronics is an area of study in which researchers manipulate the (spin) of electrons, for example, by applying light.

Jan 10, 2025

Electrokinetic rare earth mining technique gets upscaled to industrial levels

Posted by in categories: chemistry, computing, mobile phones

A team of metallurgists and geochemists at Guangzhou Institute of Geochemistry, working with a mechanical engineer from the Chinese Academy of Sciences, has improved their previous electrokinetic mining technique by scaling it up to industrial levels. In their paper published in Nature Sustainability, the group describes the changes they made to their system, and the results of testing they conducted at a mine.

Modern technology is reliant on multiple —they are used in EVs, smartphones and computers, for example. Unfortunately, mining such elements is extremely environmentally unfriendly. Huge machines are used to dig dirt and rock from large mines, where it is mixed with water and a host of toxic chemicals in order to extract the desired elements.

The process produces thousands of metric tons of toxic waste. The team in China has been working for several years to develop a cleaner way to extract the elements. It involves generating an electric field underground that coaxes the desired elements closer together and concentrates them, making for a much easier and cleaner separation process.

Jan 10, 2025

Quantum Is More Than Just Computing

Posted by in categories: computing, particle physics, quantum physics

Quantum computing is getting a lot of attention lately — deservedly so. It’s hard not to get excited about the new capabilities that quantum computing could bring. This new generation of computers will solve extremely complex problems by sorting through billions upon billions of wrong answers to arrive at the correct solutions. We could put these capabilities to work designing new medications or optimizing global infrastructure on an enormous scale.

But in the excitement surrounding quantum computing, what often gets lost is that computing is just one element of the larger quantum technologies story. We are entering a new quantum era in which we are learning to manipulate and control the quantum states of matter down to the level of individual particles. This has unlocked a wealth of new possibilities across multiple fields. For instance, by entangling two photons of light, we can generate a communications channel that is impervious to eavesdropping. Or we can put the highly sensitive nature of quantum particles to work detecting phenomena we have never been able to sense before.

We call this new era of innovation Quantum 2.0, distinguishing it from the Quantum 1.0 era of the last 100 years. Quantum 1.0 gave us some of the most remarkable inventions of the 20th century, from the transistor to the laser. But as we transition to Quantum 2.0, we are reconceptualizing the way we communicate and the way we sense the world, as well as the way we compute. What’s more, we’re only just beginning to realize Quantum 2.0’s full potential.

Jan 9, 2025

Integrated Photonics Hits Milestone: High-Power Tunable Lasers Break New Ground

Posted by in categories: computing, satellites

Researchers have created a high-power tunable laser on silicon photonics, achieving nearly 2 watts using an LMA amplifier. This advancement could revolutionize integrated photonics, with potential applications in space exploration, reducing satellite costs while enhancing capabilities.

In today’s world, the size of various systems continues to decrease, incorporating increasingly smaller components for applications like high-speed data centers and space exploration with compact satellites.

However, this trend toward miniaturization and high-density integration—driven by advancements in integrated photonics—has significantly compromised the ability of these systems to generate high signal power. Traditionally, high-power output has been associated with larger systems, such as fiber and solid-state platforms, whose substantial physical dimensions allow for greater energy storage.

Jan 9, 2025

Predicting the “digital superpowers” we could have by 2030

Posted by in category: computing

2025 could be the year that puts mainstream computing on the track toward developing ‘augmented mentality.’

Jan 9, 2025

Decoding 2D material growth: White graphene insights open doors to cleaner energy and more efficient electronics

Posted by in categories: chemistry, computing, nanotechnology, particle physics

A breakthrough in decoding the growth process of hexagonal boron nitride (hBN), a 2D material, and its nanostructures on metal substrates could pave the way for more efficient electronics, cleaner energy solutions and greener chemical manufacturing, according to new research from the University of Surrey published in the journal Small.

Only one atom thick, hBN—often nicknamed “white graphene”—is an ultra-thin, super-resilient material that blocks electrical currents, withstands extreme temperatures and resists chemical damage. Its unique versatility makes it an invaluable component in , where it can protect delicate microchips and enable the development of faster, more efficient transistors.

Going a step further, researchers have also demonstrated the formation of nanoporous hBN, a novel material with structured voids that allows for selective absorption, advanced catalysis and enhanced functionality, vastly expanding its potential environmental applications. This includes sensing and filtering pollutants—as well as enhancing advanced energy systems, including hydrogen storage and electrochemical catalysts for fuel cells.

Jan 9, 2025

Specialized hardware solves high-order optimization problems with in-memory computing

Posted by in categories: biotech/medical, computing, neuroscience

In an unprecedented new study, researchers have shown neurotransmitters in the human brain are released during the processing of the emotional content of language, providing new insights into how people interpret the significance of words.

The work, conducted by an international team led by Virginia Tech scientists, offers deeper understanding into how language influences human choices and mental health.

Spearheaded by computational neuroscientist Read Montague, a professor of the Fralin Biomedical Research Institute at VTC and director of the institute’s Center for Human Neuroscience Research, the study represents a first-of-its-kind exploration of how neurotransmitters process the emotional content of language—a uniquely human function.

Page 6 of 891First345678910Last