Menu

Blog

Archive for the ‘computing’ category: Page 609

Jun 11, 2019

When Will Quantum Computers Outperform Regular Computers?

Posted by in categories: computing, particle physics, quantum physics

Any day now, quantum computers will solve a problem too hard for a classical computer to take on. Or at least, that’s what we’ve been hoping. Scientists and companies are racing toward this computing milestone, dubbed quantum supremacy and seemingly just beyond our reach, and if you’ve been following the quantum computing story, you might wonder why we’re not there yet, given all the hype.

The short answer is that controlling the quantum properties of particles is hard. And even if we could use them to compute, “quantum supremacy” is a misleading term. The first quantum supremacy demonstration will almost certainly be a contrived problem that won’t have a practical or consumer use. Nonetheless, it’s a crucial milestone when it comes to benchmarking these devices and establishing what they can actually do. So what’s holding us back from the future?

Read more

Jun 11, 2019

Tracking major sources of energy loss in compact fusion facilities

Posted by in categories: computing, particle physics

A key obstacle to controlling on Earth the fusion that powers the sun and stars is leakage of energy and particles from plasma, the hot, charged state of matter composed of free electrons and atomic nuclei that fuels fusion reactions. At the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), physicists have been focusing on validating computer simulations that forecast energy losses caused by turbulent transport during fusion experiments.

Researchers used codes developed at General Atomics (GA) in San Diego to compare theoretical predictions of electron and ion turbulent transport with findings of the first campaign of the laboratory’s compact—or “low-aspect ratio”—National Spherical Torus Experiment-Upgrade (NSTX-U). GA, which operates the DIII-D National Fusion Facility for the DOE, has developed codes well-suited for this purpose.

Low-aspect ratio tokamaks are shaped like cored apples, unlike the more widely used conventional tokamaks that are shaped like doughnuts.

Continue reading “Tracking major sources of energy loss in compact fusion facilities” »

Jun 11, 2019

IceCube Neutrino Observatory

Posted by in categories: computing, particle physics

The IceCube Laboratory at the Amundsen-Scott South Pole Station, in Antarctica, hosts the computers that collect raw data from the sensors buried in the ice below.


Website of the IceCube Neutrino Observatory, featuring news, galleries, and information about the mission of IceCube, the IceCube Collaboration, and IceCube’s scientific outcomes.

Read more

Jun 11, 2019

How Self-Healing Microchips Recover

Posted by in category: computing

Caltech engineers have constructed a new kind of microchip that can learn to heal its own information pathways.

  • By Marshall Honorof, TechNewsDaily on March 12, 2013

Read more

Jun 10, 2019

Laser-driven Particle Accelerator Made Ten Thousand Times Smaller

Posted by in categories: biotech/medical, computing, nanotechnology

Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared (NIR) pulsed lasers, resulting in a 10,000 times reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. Researchers present the first experimental demonstration of a waveguide-integrated DLA, designed using a photonic inverse design approach. These on-chip devices accelerate sub-relativistic electrons of initial energy 83.4 keV by 1.21 keV over 30 µm, providing peak acceleration gradients of 40.3 MeV/m. This progress represents a significant step towards a completely integrated MeV-scale dielectric laser accelerator.

Dielectric laser accelerators have emerged as a promising alternative to conventional RF accelerators due to the large damage threshold of dielectric materials the commercial availability of powerful NIR femtosecond pulsed lasers, and the low-cost high-yield nanofabrication processes which produce them. Together, these advantages allow DLAs to make an impact in the development of applications such as tabletop free-electron-lasers, targeted cancer therapies, and compact imaging sources.

They have designed and experimentally verified the first waveguide-integrated DLA structure. The design of this structure was made possible through the use of photonics inverse design methodologies developed by the team members. The fabricated and experimentally demonstrated devices accelerate electrons of an initial energy of 83.4 keV by a maximum energy gain of 1.21 keV over 30 µm, demonstrating acceleration gradients of 40.3 MeV/m. In this integrated form, these devices can be cascaded to reach MeV-scale energies, capitalizing on the inherent scalability of photonic circuits. Future work will focus on multi-stage demonstrations, as well as exploring new design and material solutions to obtain larger gradients.

Continue reading “Laser-driven Particle Accelerator Made Ten Thousand Times Smaller” »

Jun 10, 2019

KickSat: Our goal is to dramatically lower the cost of spaceflight, making it easy enough and affordable enough for anyone to explore space

Posted by in categories: biotech/medical, computing, solar power, space travel, sustainability

We can do this by shrinking the size and mass of the spacecraft, allowing many to be launched together.

Sprite

The Sprite is a tiny (3.5 by 3.5 centimeter) single-board spacecraft. It has a microcontroller, radio, and solar cells and is capable of carrying single-chip sensors, such as thermometers, magnetometers, gyroscopes, and accelerometers. To lower costs, Sprites are designed to be deployed hundreds at a time in low Earth orbit and to simultaneously communicate with a ground station receiver.

Read more

Jun 10, 2019

Neuromorphic computing and the brain that wouldn’t die

Posted by in categories: computing, nanotechnology, neuroscience

Chemical engineers at UCLA have been demonstrating what they argue is scientific evidence that bunches of synthetically grown nanowires exhibit behaviors similar to that of memory in a living brain. Whether you believe their claim depends on what you think memory actually is.

Read more

Jun 10, 2019

What neuromorphic engineering is, and why it’s triggered an analog revolution

Posted by in categories: computing, engineering, neuroscience

Maybe we can’t keep packing transistors onto substrates the way Gordon Moore showed us how to do. So how about if we replaced those millions of transistors with components “inspired by the true story” of the brain?

Read more

Jun 10, 2019

China invents ‘mind-reading chip’ called Brain Talker that ‘sends your thoughts to a computer’

Posted by in categories: computing, neuroscience

A MIND reading brain computer chip has been announced at the World Intelligence Congress in China.

The breakthrough device is called Brain Talker and allows a person to control a computer with just their brainwaves.

Brain-computer interfaces (BCIs) are devices that have been designed to create simple communication between the human brain and computers.

Continue reading “China invents ‘mind-reading chip’ called Brain Talker that ‘sends your thoughts to a computer’” »

Jun 9, 2019

Particle accelerator on a microchip

Posted by in categories: computing, particle physics

The Gordon and Betty Moore Foundation has awarded 13.5 million US dollars (12.6 million euros) to promote the development of a particle accelerator on a microchip. DESY and the University of Hamburg are among the partners involved in this international project, headed by Robert Byer of Stanford University (USA) and Peter Hommelhoff of the University of Erlangen-Nürnberg. Within five years, they hope to produce a working prototype of an “accelerator-on-a-chip”.

Read more