Menu

Blog

Archive for the ‘computing’ category: Page 646

Oct 8, 2018

Brain Meets Machine: The Art and Science of Brain-Computer Interfaces

Posted by in categories: computing, mathematics, neuroscience, science

Current brain-computer interface (BCI) research helps people who have lost the ability to affect their environment in ways many of us take for granted. Future BCIs may go beyond motor function, perhaps aiding with memory recall, decision-making, and other cognitive functions.


Have you ever studied a foreign language and wished you could upload the vocabulary lists directly into your brain so that you could retain them? Would you like to do mental math with the speed and accuracy of a calculator? Do you want a literal photographic memory? Well, these dreams are still the stuff of science fiction, but the brave new world of brain-computer interfaces, or BCI, is well on its way to making technological miracles of this sort a reality.

The story of BCI begins with the discovery of electrical signals emitted by the brain. In 1924, German scientist Hans Berger recorded the first electroencephalogram, or EEG, by placing electrodes under a person’s scalp. Although his research was at first met with derision, a whole new way to study the brain was born from his work. It is now well accepted that the human brain emits electric signals at a variety of frequencies currently known as brainwaves.

Continue reading “Brain Meets Machine: The Art and Science of Brain-Computer Interfaces” »

Oct 8, 2018

Graduate Student Solves Quantum Verification Problem

Posted by in categories: computing, quantum physics

Urmila Mahadev spent eight years in graduate school solving one of the most basic questions in quantum computation: How do you know whether a quantum computer has done anything quantum at all?

Read more

Oct 8, 2018

Engineers build smallest integrated Kerr frequency comb generator

Posted by in categories: biotech/medical, chemistry, computing, engineering, security

Optical frequency combs can enable ultrafast processes in physics, biology, and chemistry, as well as improve communication and navigation, medical testing, and security. The Nobel Prize in Physics 2005 was awarded to the developers of laser-based precision spectroscopy, including the optical frequency comb technique, and microresonator combs have become an intense focus of research over the past decade.

A major challenge has been how to make such comb sources smaller and more robust and portable. In the past 10 years, major advances have been made in the use of monolithic, chip-based microresonators to produce such combs. While the microresonators generating the are tiny—smaller than a human hair—they have always relied on external lasers that are often much larger, expensive, and power-hungry.

Researchers at Columbia Engineering announced today in Nature that they have built a Kerr frequency comb generator that, for the first time, integrates the together with the , significantly shrinking the system’s size and power requirements. They designed the laser so that half of the laser cavity is based on a semiconductor waveguide section with high optical gain, while the other half is based on waveguides, made of , a very low-loss material. Their results showed that they no longer need to connect separate devices in the lab using fiber—they can now integrate it all on photonic chips that are compact and energy efficient.

Read more

Oct 6, 2018

New computer model designs a drug delivery strategy to fight cancer

Posted by in categories: biotech/medical, computing, nanotechnology

A better understanding of how nanoparticles move from the bloodstream into a tumor could eventually lead to more effective cancer treatment.

Read more

Oct 5, 2018

Researchers Created ‘Quantum Artificial Life’ For the First Time

Posted by in categories: alien life, computing, particle physics, quantum physics

For the first time, an international team of researchers has used a quantum computer to create artificial life—a simulation of living organisms that scientists can use to understand life at the level of whole populations all the way down to cellular interactions.

With the quantum computer, individual living organisms represented at a microscopic level with superconducting qubits were made to “mate,” interact with their environment, and “die” to model some of the major factors that influence evolution.

The new research, published in Scientific Reports on Thursday, is a breakthrough that may eventually help answer the question of whether the origin of life can be explained by quantum mechanics, a theory of physics that describes the universe in terms of the interactions between subatomic particles.

Continue reading “Researchers Created ‘Quantum Artificial Life’ For the First Time” »

Oct 5, 2018

Intel plots a weird, spooky future in quantum computing

Posted by in categories: computing, particle physics, quantum physics, space

There, engineers are doing something strange. They’re freezing computer chips to 460 degrees Fahrenheit below zero, colder than deep space, to simulate the quantum structure of the universe.

At such extreme temperatures these remarkable chips, called qubits, enable scientists to peer into the complex, uncertain interaction of particles at the atomic level — an unseen world in which seemingly contradictory results can exist simultaneously, a place where simply observing an interaction can change it. Or wreck it altogether.

“Quantum — it’s something weird,” said Mike Mayberry, Intel’s chief technology officer and general manager of Intel Labs.

Continue reading “Intel plots a weird, spooky future in quantum computing” »

Oct 4, 2018

You’ll Be Using Quantum Computers Sooner Than You Think

Posted by in categories: computing, quantum physics

There won’t be a single “winner” in the field.

Read more

Oct 4, 2018

Wi-Fi 6 Is Coming: Here’s Why You Should Care

Posted by in categories: computing, internet, mobile phones

Get ready for the next generation of wifi technology: Wi-fi 6 (for so it is named) is going to be appearing on devices from next year. But will you have to throw out your old router and get a new one? And is this going to make your Netflix run faster? Here’s everything you need to know about the new standard.

A brief history of wifi

Those of you of a certain age will remember when home internet access was very much wired—only one computer could get online, a single MP3 took half an hour to download, and you couldn’t use the landline phone at the same time.

Continue reading “Wi-Fi 6 Is Coming: Here’s Why You Should Care” »

Oct 4, 2018

The History of Computing

Posted by in category: computing

In this video, we’ll be discussing the evolution of computing – more specifically, the evolution of the technologies that have brought upon the modern computing era.

[0:30–5:33] — Starting off we’ll look at, the origins of computing from as far back as 3000 BC with the abacus and progressing to discuss some of the first mechanical computers. After this, we’ll get to see the first signs of modern computing emerge, through the use of electromechanical relays in computers along with punched cards for data I/O.

[5:33–8:36] — Following that we’ll discuss, the 1st generation of modern computing, the vacuum tube era. The first technology that was fully digital and resembled how modern computers operate.

Read more

Oct 4, 2018

Scientists Have Found a New Way of Storing Information in a Single Atom

Posted by in categories: computing, particle physics

Humanity is producing so much data every single minute that we either need to slow down, or scientists need to crack the problem of finding better ways of storing that data ASAP. Now, new research has taken us one step closer to the ultimate in compact data storage: putting data on a single atom.

As the basic building blocks of all matter, atoms are the smallest object we could possibly store a bit (a 1 or a 0) on, potentially shrinking down the size of existing hard drives by about a thousand times or so, if we can figure out how to get it to work.

Scientists have already made progress in storing bits on atoms, but only on a small scale and in tightly controlled lab conditions, which usually means extremely cold setups.

Continue reading “Scientists Have Found a New Way of Storing Information in a Single Atom” »