Menu

Blog

Archive for the ‘computing’ category: Page 719

Oct 26, 2016

Quantum Bit MRI Machine to See Shapes of Individual Biomolecules for Drug Research

Posted by in categories: biotech/medical, computing, particle physics, quantum physics

Drug discovery is a long and difficult process that requires a comprehensive understanding of the molecular structures of compounds under investigation. It’s difficult to have an idea of the precise shape of complex molecules such as proteins, but researchers at University of Melbourne in Australia have come up with a way of seeing the location of individual atoms within biomolecules.

Using quantum bits, most notably utilized in quantum computer research, the investigators offer a way of producing a magnetic resonance sensor and a magnetic field gradient that can work as a tiny MRI machine. The machine would have the resolution capable of seeing single atoms components of larger molecules. This MRI machine has yet to be actually built, but the steps have been laid out based on comprehensive theoretical work. If it proves successful in practice, the technology may overcome current imaging techniques that rely on statistical averages and don’t work well on molecules that don’t crystallize well.

“In a conventional MRI machine large magnets set up a field gradient in all three directions to create 3D images; in our system we use the natural magnetic properties of a single atomic qubit,” said lead author of the research Viktor Perunicic. “The system would be fabricated on-chip, and by carefully controlling the quantum state of the qubit probe as it interacts with the atoms in the target molecule, we can extract information about the positions of atoms by periodically measuring the qubit probe and thus create an image of the molecule’s structure.”

Continue reading “Quantum Bit MRI Machine to See Shapes of Individual Biomolecules for Drug Research” »

Oct 26, 2016

Introducing Microsoft Surface Studio — All In One Touchscreen PC

Posted by in category: computing

Read more

Oct 26, 2016

Microsoft’s New Surface Studio PC

Posted by in category: computing

Read more

Oct 26, 2016

Google’s neural networks invent their own encryption

Posted by in categories: computing, encryption, robotics/AI

Using machine learning, computers have come up with codes that let them send secret messages to each other – but they’re still a long way off humans.

Read more

Oct 25, 2016

Can A Brain Computer Interface Convert Your Thoughts to Text?

Posted by in categories: biotech/medical, computing, neuroscience

Summary: Brain-to-text system could help people with speech difficulties to communicate, researchers report.

Source: Frontiers.

Recent research shows brain-to-text device capable of decoding speech from brain signals.

Continue reading “Can A Brain Computer Interface Convert Your Thoughts to Text?” »

Oct 25, 2016

Soon, print your own smart tattoos, wearable fitness trackers

Posted by in categories: computing, wearables

Nice.


Scientists have created an inexpensive technique to print “data skin” — soft wearable electronics — paving way for smart tattoos that can be customised and printed at home.

Researchers created a fully functional “data skin” in under an hour. Since the method is based on inexpensive processing tools and materials, the circuits can be produced for less than a dollar.

Continue reading “Soon, print your own smart tattoos, wearable fitness trackers” »

Oct 25, 2016

The exciting new age of quantum computing

Posted by in categories: biotech/medical, computing, encryption, military, quantum physics, security, space travel

What does the future hold for computing? Experts at the Networked Quantum Information Technologies Hub (NQIT), based at Oxford University, believe our next great technological leap lies in the development of quantum computing.

Quantum computers could solve problems it takes a conventional computer longer than the lifetime of the universe to solve. This could bring new possibilities, such as advanced drug development, superior military intelligence, greater opportunities for and enhanced encryption security.

Continue reading “The exciting new age of quantum computing” »

Oct 25, 2016

Scientists Generate the Fastest Electric Current Ever Measured Inside a Solid Material

Posted by in categories: computing, mobile phones, particle physics, quantum physics

Using ultrafast laser flashes, physicists from the Max Planck Institute have generated the fastest electric current that has ever been measured inside a solid material.

In the field of electronics, the principle ‘the smaller, the better’ applies. Some building blocks of computers or mobile phones, however, have become nearly as small today as only a few atoms. It is therefore hardly possible to reduce them any further.

Another factor for the performance of electronic devices is the speed at which electric currents oscillate. Scientists at the Max Planck Institute of Quantum Optics have now created electric currents inside solids which exceed the frequency of visible light by more than ten times They made electrons in silicon dioxide oscillate with ultrafast laser pulses. The conductivity of the material which is typically used as an insulator was increased by more than 19 orders of magnitude.

Continue reading “Scientists Generate the Fastest Electric Current Ever Measured Inside a Solid Material” »

Oct 25, 2016

Beyond Moore’s Law: 13 Investors, CEOs, And Researchers Sound Off On Quantum Computing

Posted by in categories: computing, finance, quantum physics, robotics/AI

A nice read on the who’s who in QC: congrats Vern Brownell and Michelle S. in making the top 13 list.


Leaders in quantum computing discuss the challenges and potential for this technology across finance, AI, and many other fields.

Read more

Oct 25, 2016

Scientists slam carbon out of diamonds to create the first quantum computing bridge

Posted by in categories: computing, quantum physics

What happens when you knock the carbon out of diamonds? You end up maintaining 100 percent quantum integrity; therefore, you can now transmit multitude of Qubits together over a long distance instead of 1 Qubit in one transmission and among multiple QC Devices.


New breakthrough paves the way for the first practical quantum computers

Quantum computers are a reality but unlike the first traditional computers, which were large enough to fill a room, most of today’s quantum computers are very small with one, five, or even 16 qubits at their core and getting to the point where we have a truly practical quantum computer is going to require component by component advances until, one day, we get to the point where all of the blocks “just work”.

Continue reading “Scientists slam carbon out of diamonds to create the first quantum computing bridge” »