Menu

Blog

Archive for the ‘computing’ category: Page 778

May 17, 2016

Theorists smooth the way to modeling quantum friction

Posted by in categories: chemistry, computing, information science, particle physics, quantum physics

Theoretical chemists at Princeton University have pioneered a strategy for modeling quantum friction, or how a particle’s environment drags on it, a vexing problem in quantum mechanics since the birth of the field. The study was published in the Journal of Physical Chemistry Letters (“Wigner–Lindblad Equations for Quantum Friction”). “It was truly a most challenging research project in terms of technical details and the need to draw upon new ideas,” said Denys Bondar, a research scholar in the Rabitz lab and corresponding author on the work.

Researchers construct a quantum counterpart of classical friction, a velocity-dependent force acting against the direction of motion

Researchers construct a quantum counterpart of classical friction, a velocity-dependent force acting against the direction of motion. In particular, a translationary invariant Lindblad equation is derived satisfying the appropriate dynamical relations for the coordinate and momentum (i.e., the Ehrenfest equations). Numerical simulations establish that the model approximately equilibrates. (© ACS)

Continue reading “Theorists smooth the way to modeling quantum friction” »

May 17, 2016

Imec Expands its Silicon Platform for Quantum Computing Applications

Posted by in categories: computing, quantum physics

Nice.


Imec will implement qubits and supporting nanoelectronic functionality for quantum computing, leveraging its advanced silicon (Si) platform that was established within the framework of its industrial affiliation program with additional support from the EU through e.g. ECSEL projects SENATE and TAKE-5.

Read more

May 17, 2016

IBM scientists achieve storage memory breakthrough

Posted by in categories: computing, electronics, internet

For the first time, scientists at IBM Research have demonstrated reliably storing 3 bits of data per cell using a relatively new memory technology known as phase-change memory (PCM).

The current landscape spans from venerable DRAM to hard disk drives to ubiquitous flash. But in the last several years PCM has attracted the industry’s attention as a potential universal memory technology based on its combination of read/write speed, endurance, non-volatility and density. For example, PCM doesn’t lose data when powered off, unlike DRAM, and the technology can endure at least 10 million write cycles, compared to an average flash USB stick, which tops out at 3,000 write cycles.

Continue reading “IBM scientists achieve storage memory breakthrough” »

May 16, 2016

Singularity is Near! Full Documentary Michio Kaku | Ray Kurzweil

Posted by in categories: computing, education, Ray Kurzweil, robotics/AI, singularity

https://www.youtube.com/watch?v=8CSNmrunCnA

Michio Kaku and Ray Kurzweil explains the exponential rate at which Technological Singularity is approaching and the future is far near than we can Imagine!

2029 : Singularity Year — Neil deGrasse Tyson & Ray Kurzweil — https://www.youtube.com/watch?v=EyFYFjESkWU

Continue reading “Singularity is Near! Full Documentary Michio Kaku | Ray Kurzweil” »

May 16, 2016

Nanorobots: Where We Are Today and Why Their Future Has Amazing Potential

Posted by in categories: computing, health, nanotechnology, robotics/AI

This post is a status update on one of the most powerful tools humanity will ever create: nanotechnology (or nanotech).

My goal here is to give you a quick overview of the work going on in labs around the world, and the potential applications this nanotech work will have in health, energy, the environment, materials science, data storage and processing.

As artificial intelligence has been getting a lot of the attention lately, I believe we’re going to start to see and hear about incredible breakthroughs in the nanotech world very soon.

Continue reading “Nanorobots: Where We Are Today and Why Their Future Has Amazing Potential” »

May 16, 2016

Peter: Nanorobots… Inside You

Posted by in categories: computing, health, nanotechnology, robotics/AI

This blog is a status update on one of the most powerful tools humanity will ever create: Nanotechnology (or nanotech).

My goal here is to give you a quick overview of the work going on in labs around the world, and the potential applications this nanotech work will have in health, energy, the environment, material sciences, data storage and processing.

As artificial intelligence has been getting a lot of the attention lately, I believe we’re going to start to see and hear about incredible breakthroughs in the nanotech world very soon.

Continue reading “Peter: Nanorobots… Inside You” »

May 15, 2016

This electric jet can take off vertically but drives like a car

Posted by in categories: computing, transportation

With zero emissions and zero runway, the Lilium Jet will be the world’s first entirely electric jet capable of a vertical takeoff and landing (VTOL). Able to fly up to an altitude of about 9,800 feet, the two-person airplane will have a cruising speed of 180 mph, a maximum speed of about 250 mph, and a range of 300 miles. At the forefront of functionality, the environmentally conscious conveyance will also be able to fold back its wings and be driven as a car.

To provide lift and keep the craft aloft, a series of tiltable electric engines will generate a combined 435 hp. Steering and navigation is done through a computer-assisted control system, and the only requisite to operate the vehicle will be a Sport Pilot License (SPL) requiring a minimum of 20 hours of flight time.

Lilium Aviaiton jet
Lilium Aviaiton.

Continue reading “This electric jet can take off vertically but drives like a car” »

May 15, 2016

Wormholes could be the key to beating the Heisenberg’s uncertainty principle, say physicists

Posted by in categories: computing, physics, space, time travel

Time travel seems much more common in science fiction than it is in reality. We’ve never met anyone from the future, after all. But all of the physics we know indicates that wormholes — another science fiction favourite — could really be used to travel backwards in time.

And according to a paper by Chinese physicists, using wormholes for time travel might actually allow us to beat Heisenberg’s uncertainty principle — described as one of the most famous (and probably misunderstood) ideas in physics — and even to solve some of the most difficult problems in computer science.

Wormholes are like portals between two places in the Universe. If you fell in one side, you’d pop out the other immediately, regardless of how far apart the two sides were. But wormholes are also like portals between two times in the Universe. As Carl Sagan liked to say, you wouldn’t just emerge some where else in space, but also some when else in time.

Continue reading “Wormholes could be the key to beating the Heisenberg’s uncertainty principle, say physicists” »

May 14, 2016

Google a step closer to developing machines with human-like intelligence

Posted by in categories: computing, information science, neuroscience, robotics/AI

An algorithm developed by Google is designed to encode thought, which could lead to computers with ‘common sense’ within a decade, says leading AI scientist.

Read more

May 13, 2016

IARPA Releases Its Shopping List For Spy Technology

Posted by in categories: computing, neuroscience, policy

IARPA’s Christmas List :

• Brain computer interfaces to enhance cognitive processing or increase bandwidth of human-machine interactions.

• Computational social policy.

Continue reading “IARPA Releases Its Shopping List For Spy Technology” »