Menu

Blog

Archive for the ‘computing’ category: Page 860

Oct 4, 2015

This new smart glove can turn sign language into text and speech

Posted by in categories: computing, electronics

Sign language has helped the hearing-impaired communicate for many centuries, way before it was formalised and officially recognised, but this long-standing language of gestures has now been given a 21st-century technological upgrade. Saudi designer and media artist Hadeel Ayoub has invented a smart glove that recognises hand movements and converts them into the relevant text.

Much like Google Translate can give anyone a basic grasp of a foreign language in an instant, this glove is designed to help sign language users make themselves understood by those who can’t usually interpret it.

Five flex sensors sit on the fingers, monitoring how they’re being manipulated, while an accelerometer integrated into the fabric of the glove figures out how the hand is being held and the direction in which it’s pointing. Through three successive prototypes, the glove has been made thinner, lighter, and faster, and the latest version includes a text-to-speech chip to vocalise the words as they’re signed.

Read more

Oct 3, 2015

Method to replace silicon with carbon nanotubes developed

Posted by in categories: computing, engineering, singularity

Moore’s Law is, and shall be for a very long time, the law of the land.
Singularity: +1, Luddites: Who cares, they don’t use computers.
wink


Schematic of a set of molybdenum (M0) end-contacted nanotube transistors (credit: Qing Cao et al./Science)

IBM Research has announced a “major engineering breakthrough” that could lead to carbon nanotubes replacing silicon transistors in future computing technologies.

Read more

Oct 2, 2015

Incident of drunk man kicking humanoid robot raises legal questions

Posted by in categories: computing, law, robotics/AI

A few weeks ago, a drunk man in Japan was arrested for kicking a humanoid robot that was stationed as a greeter at a SoftBank, Corp., store, which develops the robots. According to the police report, the man said he was angry at the attitude of one of the store clerks. The “Pepper robot” now moves more slowly, and its internal computer system may have been damaged.

Under current Japanese law, the man can be charged with damage to property, but not injury, since injury is a charge reserved for humans. Dr. Yueh-Hsuan Weng, who is cofounder of the ROBOLAW.ASIA Initiative at Peking University in China, and former researcher of the Humanoid Robotics Institute at Waseda University in Japan, thinks a better charge lies somewhere in between.

Weng is advocating for special robot laws to address the unique nature of human-robot interactions. He argues that humans perceive highly intelligent, social robots like Pepper (which can read human emotions) differently than normal machines—maybe more like pets—and so the inappropriate treatment of robots by humans should be handled with this in mind.

Read more

Oct 2, 2015

‘Major’ IBM breakthrough breathes new life into Moore’s Law

Posted by in categories: computing, innovation

IBM scientists take a big step toward their quest to bring us speedy, low-power chips. The secret: carbon nanotubes.

Read more

Oct 2, 2015

Google, NASA using quantum computing to push A.I., machine learning

Posted by in categories: computing, quantum physics, robotics/AI, space

Google and NASA are continuing to test quantum computers and this week entered into a new agreement to work with a series of updated systems.

D-Wave Systems, a quantum computing company based in Burnaby, British Columbia, announced this week that it had signed a deal to install a succession of D-Wave systems at NASA’s Ames Research Center in Moffett Field, California. NASA and Google on Wednesday also confirmed the deal.

NASA and the Universities Space Research Association (USRA) are collaborating on the project, which is focused on advancing artificial intelligence and machine learning.

Read more

Oct 2, 2015

Nanotube Electronics Could Replace Silicon — IBM Research Breakthrough

Posted by in categories: computing, electronics, engineering

IBM announced a major engineering breakthrough that could open the way to replacing silicon transistors with carbon nanotubes in future electronics and computing technologies.

Silicon transistors have become dramatically smaller in the last decades following Moore’s Law — the observation that the number of transistors per unit area doubles every two tears. However, silicon transistor technology is approaching a point of physical limitation.

With Moore’s Law running out of steam, shrinking the size of transistors — including the channels and contacts — without compromising performance is a research and manufacturing challenge. Carbon nanotube technology could lead to much smaller transistors and keep electronics and computing devices on the Moore’s Law of exponentially decreasing size and thus increasing performance. However, as devices become smaller, increased contact resistance for carbon nanotubes has hindered performance gains until now.

Read more

Oct 1, 2015

IBM unlocks the secret to carbon nanotube transistors

Posted by in categories: computing, engineering, internet, materials, neuroscience

Following Moore’s law is getting harder and harder, especially as existing components reach their physical size limitations. Parts like silicon transistor contacts — the “valves” within a transistor that allow electrons to flow — simply can’t be shrunken any further. However, IBM announced a major engineering achievement on Thursday that could revolutionize how computers operate: they’ve figured out how to swap out the silicon transistor contacts for smaller, more efficient, carbon nanotubes.

The problem engineers are facing is that the smaller silicon transistor contacts get, the higher their electrical resistance becomes. There comes a point where the components simply get too small to conduct electrons efficiently. Silicon has reached that point. But that’s where the carbon nanotubes come in. These structures measure less than 10 nanometers in diameter — that’s less than half the size of today’s smallest silicon transistor contact. IBM actually had to devise a new means of attaching these tiny components. Known as an “end-bonded contact scheme” the 10 nm electrical leads are chemically bonded to the metal substructure. Replacing these contacts with carbon nanotubes won’t just allow for computers to crunch more data, faster. This breakthrough ensures that they’ll continue to shrink, following Moore’s Law, for several iterations beyond what silicon components are capable of.

“These chip innovations are necessary to meet the emerging demands of cloud computing, Internet of Things and Big Data systems,” Dario Gil, vice president of Science & Technology at IBM Research, said in a statement. “As technology nears the physical limits of silicon, new materials and circuit architectures must be ready to deliver the advanced technologies that will drive the Cognitive Computing era. This breakthrough shows that computer chips made of carbon nanotubes will be able to power systems of the future sooner than the industry expected.” The study will be formally published October 2nd, in the journal Science. This breakthrough follows a number of other recent minimization milestones including transistors that are only 3-atoms thick or constructed from a single atom.

Read more

Oct 1, 2015

This Wearable Keyboard Makes You Move If You Want To Write An Email — By Jessica Leber | Fast Company

Posted by in categories: computing, wearables

“A design concept created by Nitcha Fame Tothong, an MFA student at the Parsons School of Design in New York, the keyBod “explores the mechanical relationship between the body, mind, and digital environment.””

Read more

Oct 1, 2015

Did Google’s quantum computer just get the biggest processor upgrade in history?

Posted by in categories: computing, quantum physics

If all the claims are true, this highly specialized processor is unimaginably fast at certain specific operations.

Read more

Sep 30, 2015

To Make Robot Hands More Like Ours, MIT Built These Softer, Smarter Fingers

Posted by in categories: computing, electronics, robotics/AI

It’s easy to forget how amazing the dexterity and anatomy of our own hands are–until you learn how difficult they are to replicate for machines. MIT has made big strides in robotic hands this year, and now it’s published a new one.

This week at the International Conference on Intelligent Robots and Systems, Bianca Homberg, Daniela Rus (the director of MIT’s Computer Science and Artificial Intelligence Laboratory) and their colleagues are showing off the latest advance in robotic digits: Modular fingers made of silicone and embedded with sensors, dexterous enough to pick up everything from soft toys to single pieces of paper without needing to be programmed to understand what it’s gripping.

Read more