Menu

Blog

Archive for the ‘cosmology’ category: Page 183

Sep 9, 2022

Theoretical physicists argue that black holes admit vortex structures

Posted by in categories: cosmology, physics

Black holes are astronomical objects with extremely strong gravitational pulls from which not even light can escape. While the idea of bodies that would trap light has been around since the 18th century, the first direct observation of black holes took place in 2015.

Since then, physicists have conducted countless theoretical and experimental studies aimed at better understanding these fascinating cosmological objects. This had led to many discoveries and theories about the unique characteristics, properties, and dynamics of .

Researchers at Ludwig-Maximilians-Universität and Max-Planck-Institut für Physik have recently carried out a theoretical study exploring the possible existence of vortices in black holes. Their paper, published in Physical Review Letters, shows that black holes should theoretically be able to admit structures.

Sep 9, 2022

To Hear or Not to Hear Overtones in Black Hole Mergers

Posted by in categories: cosmology, physics

With the upgraded detectors at the Laser Interferometer Gravitational-Wave Observatory (LIGO) and its sister facility Virgo, researchers can now measure significantly finer details of the gravitational-wave signals released from black hole mergers. This progress opens tantalizing prospects for black hole spectroscopy, a technique that involves analyzing the signal-frequency spectra of gravitational waves and that could be used to test the limits of the general theory of relativity. In 2019, an analysis of the first detected gravitational-wave signal (GW150914) indicated that it contained multiple tones, or “overtones” (see Synopsis: Hunting for Hair on Coalescing Black Holes), a finding that could lead to novel spectroscopy approaches. Now a new analysis of GW150914 by Roberto Cotesta of Johns Hopkins University in Baltimore and colleagues challenges that previous claim. Cotesta and his colleagues find that the suspected overtones could be caused by noise [1].

The overtones presented in the 2019 study were extracted from the “ringdown” phase of the merger, when the remnant black hole shakes like a struck bell. Cotesta and his colleagues wanted to test whether that 2019 conclusion was robust to the input assumptions used for the extraction. These assumptions include the time at which the gravitational-wave signal peaks and the noise that contributes to the measured signal. The team finds that the procedure is not robust and that some noise patterns—such as fluctuations occurring right around the signal peak—produce artifacts in the data that resemble overtones.

Theoretical physicist Swetha Bhagwat at the University of Birmingham, UK, who wasn’t involved in either study, says that while neither analysis has obvious faults, the fact that slight differences in the parameters used by the two teams lead to opposing conclusions highlights the need for further scrutiny. The detection of overtones has exciting implications for black hole spectroscopy, so it’s very important that the community debates this issue, she says.

Sep 9, 2022

Unraveling a mystery surrounding cosmic matter

Posted by in categories: cosmology, particle physics

Early in its history, shortly after the Big Bang, the universe was filled with equal amounts of matter and “antimatter”—particles that are matter counterparts but with…

Sep 9, 2022

Two atomic clocks have been quantum entangled for the first time

Posted by in categories: cosmology, quantum physics

Researchers have quantum entangled atomic clocks, allowing them to be synchronised more accurately. Such entangled clocks could be used to study dark matter and gravity more precisely.

Sep 7, 2022

Your head will spin after reading what Stephen Hawking thought about the multiverse!

Posted by in categories: cosmology, physics, singularity

The concept or idea of a multiverse fascinates physicists’ as much as sci-fi fans, but if science was able to prove it exists, could every type of universe within it actually be predicted? The late Stephen Hawking believed there was a way to shed light on this strangest cosmic mystery.

Hawking’s final paper, published in the journal High-Energy Physics revisits one of his earlier (and no less mind-blowing) theories. The “no-boundary proposal” considers Einstein’s suggestion that the pre-Big Bang universe was a singularity, an extremely dense and hot micro-speck of matter where the laws of physics didn’t apply. Hawking speculated that time as we know it was nonexistent in this singularity, which had no beginning and no end—infinite and spherical rather than finite and linear. The embryonic universe is thought to have expanded rapidly and spawned parallel worlds during a period known as cosmic inflation.

Sep 7, 2022

Artemis I September Launch In Work SpaceX Starship Update

Posted by in categories: cosmology, space travel

NASA is trying to pull a rabbit out of the hat to launch Artemis I this month. Watch to hear about this and other launch options in work. The main driver is getting waivers from range control on the Flight Termination System (FTS). Find out why the last attempt was scrubbed. The SpaceX Starship engine test campaign is also covered in this video after discussions of the advantages and disadvantages of using hydrogen fuels.

Worm-hole generators by the pound mass: https://greengregs.com/

Continue reading “Artemis I September Launch In Work SpaceX Starship Update” »

Sep 7, 2022

Scientists Uncover New Physics in the Search for Dark Matter

Posted by in categories: cosmology, particle physics

Wolfgang “Wolfi” Mittig and Yassid Ayyad began their search for dark matter—also referred to as the missing mass of the universe—in the heart of an atom.

An atom is the smallest component of an element. It is made up of protons and neutrons within the nucleus, and electrons circling the nucleus.

Sep 7, 2022

“Unlimited Possibilities” — New Law of Physics Could Predict Genetic Mutations

Posted by in categories: biological, computing, cosmology, genetics, information science, mathematics, physics

According to a University of Portsmouth study, a new physics law could allow for the early prediction of genetic mutations.

The study discovers that the second law of information dynamics, or “infodynamics,” behaves differently from the second law of thermodynamics. This finding might have major implications for how genomic research, evolutionary biology, computing, big data, physics, and cosmology develop in the future.

Lead author Dr. Melvin Vopson is from the University’s School of Mathematics and Physics. He states “In physics, there are laws that govern everything that happens in the universe, for example how objects move, how energy flows, and so on. Everything is based on the laws of physics. One of the most powerful laws is the second law of thermodynamics, which establishes that entropy – a measure of disorder in an isolated system – can only increase or stay the same, but it will never decrease.”

Sep 6, 2022

These Experiments Could Prove Einstein Wrong

Posted by in categories: cosmology, mathematics, physics

Check out the math & physics courses that I mentioned (many of which are free!) and support this channel by going to https://brilliant.org/Sabine/ where you can create your Brilliant account. The first 200 will get 20% off the annual premium subscription.

Einstein’s theory of general relativity has made countless correct predictions and yet physicists are constantly trying to prove it wrong. Why? What would it be good for to prove Einstein wrong? And how could it be done? In this video I go through the most promising experiments that physicists currently work on which could prove Einstein wrong.

Continue reading “These Experiments Could Prove Einstein Wrong” »

Sep 5, 2022

How Physicists Cracked a Black Hole Paradox

Posted by in categories: cosmology, quantum physics

Quantum entanglement and spacetime wormholes helped to solve a long-standing quandary.

By George Musser

By: