Menu

Blog

Archive for the ‘cosmology’ category: Page 199

Jun 21, 2022

What Was Before The Big Bang- The Big Bang Theory- Beginning of The Universe- Black hole- multiverse

Posted by in categories: cosmology, particle physics, singularity

According to Big Bang Theory, About 13.7 billion years ago, our entire universe existed as a singularity. It is really Difficult to imagine, how all the matter in the universe and space itself, existed in a form smaller than a subatomic particle.
But here, even more difficult question suddenly arises: What existed before the big bang?
Actually it doesn’t make any sense to ask, what happened before the big bang, as it is believed that time itself did not exist before the big bang!!! Space and time both were created after the big bang.
It is something like asking, what part of earth is north of the north pole. The north Pole is the most northern point on earth and so there is nowhere north of it.
But there is also possibility that something was there before the Big Bang happened
According to the “the big Bounce” theory, our universe is the recycled result of another universe, that dies and.
collapses in on itself. This collapsing universe would come back to a singularity before bouncing back out. It results in the big bang and a brand-new universe is again created.
But there is a problem with the big Bounce theory. Actually according to current observations, our universe is constantly expanding faster than ever before. But the big Bounce theory requires the universe to be contracted so that it can reach at the stage of singularity.
Another Possibility is of the parallel universe. According to this theory our universe is not the only Universe that exists. it is one of many universes in the Grand multiverse.
According to some scientists it may also be possible, our universe is at the other end of a black hole called a white hole.
A White hole has properties just opposite to that of the black hole.
In general relativity, a white hole is a hypothetical region of spacetime which cannot be entered from the outside, although matter and light can escape from it. In this sense it is the reverse of a black hole, which can only be entered from the outside from which matter and light cannot escape. Unlike black holes, white holes spew material into space rather than sucking material in.
All that we have discussed here, are the possibilities, what existed before the big bang. Actually we don’t really know, what really caused the big bang and what was present before it. Was there no space and time before Big Bang is also a mystery.

Visit My blog for more information.
https://www.engineeringmadeeasypro.com/

Continue reading “What Was Before The Big Bang- The Big Bang Theory- Beginning of The Universe- Black hole- multiverse” »

Jun 20, 2022

A massive galaxy supercluster in the early universe

Posted by in categories: cosmology, evolution

The structure of the universe is often described as being a cosmic web of filaments, nodes, and voids, with the nodes being clusters of galaxies, the largest gravitationally bound objects known. These nodes are thought to have been seeded by small-amplitude density fluctuations like those observed in the cosmic microwave background (CMB) which grew until they collapsed into the structures seen today. While the CMB is well understood, and the details of present-day galaxy clusters are well-described, the intermediate phases of evolution lack sufficient observations to constrain the models. Traditional galaxy cluster searches assume these objects have had enough time to equilibrate so that the intergalactic gas has heated up enough to be detected in X-ray emission. To detect the more distant galaxies and protoclusters that are too faint to detect in the X-ray, astronomers use their bright infrared or submillimeter emission instead.

The supercluster SPT2349−56, discovered in the submillimeter band by the South Pole Telescope, is so distant that its light has been traveling for over twelve billion years. It hosts over thirty submillimeter-bright galaxies and dozens of other luminous and/or spectroscopically confirmed star-forming galaxies. It is one of the most active star forming complexes known, producing over ten thousand stars per year. One of its bright sources appears to be the merger of over twenty galaxies. The stellar mass of the system, however, was not known, making it impossible for example to know whether the huge burst of stars was the result of an extraordinary efficiency or simply arose because the system was so extremely large.

CfA astronomer Matthew Ashby was a member of a team that has now completed very deep observations at optical and to obtain the stellar masses through spectral energy distribution (SED) analyses. They used the Gemini and Hubble Space Telescopes to obtain optical/near infrared flux measurements and Spitzer’s IRAC camera for the infrared flux. In order to model the SEDs, the many point sources detected need to be matched to one another at all wavelengths. This is a complex undertaking, and the scientists describe the processes for doing so while also addressing the serious blending that can occur due to inadequate spatial resolution in the infrared.

Jun 20, 2022

Hubble telescope figures out the trick to weighing a lonely black hole

Posted by in category: cosmology

The impressive feat went down without watching it feast.


The team said that the very intense gravity of the black hole will stretch out the duration of the lensing event for over 200 days.

Continue reading “Hubble telescope figures out the trick to weighing a lonely black hole” »

Jun 19, 2022

RECAP] Introducing Sagittarius A Star | Milky Way Black Hole [STREAM

Posted by in category: cosmology

https://www.youtube.com/watch?v=jxvrV4H7-pw

Sagittarius A Star is the supermassive black hole at the center of the Milky Way and for the first time ever, an image of this black hole was captured by the U.S. National Science Foundation and the Event Horizon Telescope Collaboration.

For more information on how scientist used the Event Horizon Telescope to photograph the black hole in the center of our universe, see the video below.

Continue reading “RECAP] Introducing Sagittarius A Star | Milky Way Black Hole [STREAM” »

Jun 18, 2022

A young pulsar is blazing through our galaxy at a speed of over a million miles per hour

Posted by in category: cosmology

Pulsars are rapidly spinning neutron stars, highly dense stars composed almost entirely of neutrons. They are formed when massive stars run out of fuel, collapse, and explode.

Recently, NASA’s Chandra X-ray Observatory spotted a young pulsar blazing through the Milky Way at a speed of around a million miles per hour. This pulsar is one of the fastest objects of its kind ever seen.

Chandra observed the pulsar racing through the remnants of the supernova that formed it, G292.0+1.8, around 20,000 light-years away from Earth. The speed of this pulsar is almost 30% higher than a previous estimate of the pulsar’s speed. This speed indicates that the G292.0+1.8 and its pulsar may be significantly younger than astronomers previously thought.

Jun 17, 2022

Did supernovae help form Barnard’s Loop?

Posted by in categories: cosmology, materials

Astronomers studying the structure of the Milky Way galaxy have released the highest-resolution 3D view of the Orion star-forming region. The image and interactive figure were presented today at a press conference hosted by the American Astronomical Society.

Led by researchers at the Center for Astrophysics | Harvard & Smithsonian, the work connects 3D data on young stars and interstellar gas around the Orion complex of star-forming regions. Analysis of the 2D and 3D images, alongside theoretical modeling, shows that supernova explosions within the last 4 million years produced large cavities in the interstellar material associated with Orion.

Continue reading “Did supernovae help form Barnard’s Loop?” »

Jun 16, 2022

Fastest nova ever seen ‘rings’ like a bell thanks to feeding white dwarf

Posted by in category: cosmology

New findings have revealed strange details about a bright nova that appeared in June 2021.


While these events usually fade over a period of a few weeks or even longer, V1674 Hercules was remarkable because it went faint quickly, in just over a day. The previous fastest nova faded in a period of between two to three days, and in general rapid novas are rare.

But, the rapid fade wasn’t the only remarkable thing about this system, according to new research on the nova, which determined that the energy and light output of V1674 Hercules is reverberating like a rung bell. And the “wobble” — which occurs every 501 seconds and can be seen in both visible and X-ray light — continues a year after the initial explosion.

Continue reading “Fastest nova ever seen ‘rings’ like a bell thanks to feeding white dwarf” »

Jun 16, 2022

Astronomers discovered one of the youngest neutron stars on record

Posted by in category: cosmology

Neutron stars are incredibly dense remnants of stars that collapsed and exploded as supernova, making them spin at immense speeds. By definition, they have lived for millennia, died, and then been reborn as something new.

In any case, a press statement reveals that astronomers discovered one of the youngest known neutron stars while analyzing data from the VLA Sky Survey (VLASS).

Jun 16, 2022

Quantum electrodynamics tested 100 times more accurately than ever

Posted by in categories: cosmology, particle physics, quantum physics

Using a newly developed technique, scientists at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg have measured the very small difference in the magnetic properties of two isotopes of highly charged neon in an ion trap with previously inaccessible accuracy. Comparison with equally extremely precise theoretical calculations of this difference allows a record-level test of quantum electrodynamics (QED). The agreement of the results is an impressive confirmation of the standard model of physics, allowing conclusions regarding the properties of nuclei and setting limits for new physics and dark matter.

Electrons are some of the most fundamental building blocks of the matter we know. They are characterized by some very distinctive properties, such as their negative charge and the existence of a very specific intrinsic angular momentum, also called spin. As a charged particle with spin, each electron has a magnetic moment that aligns itself in a magnetic field similar to a compass needle. The strength of this magnetic moment, given by the so-called g-factor, can be predicted with extraordinary accuracy by quantum electrodynamics. This calculation agrees with the experimentally measured g-factor to within 12 digits, one of the most precise matches of theory and experiment in physics to date. However, the magnetic moment of the electron changes as soon as it is no longer a “free” particle, i.e., unaffected by other influences, but instead is bound to an atomic nucleus, for example.

Jun 15, 2022

Scientists discover rapidly growing black hole

Posted by in category: cosmology

The fastest-growing black hole of the last 9 billion years has been discovered by an international team led by astronomers at The Australian National University (ANU).

The black hole consumes the equivalent of one Earth every second and shines 7,000 times brighter than all the light from our own galaxy, making it visible to well-equipped backyard .

Lead researcher Dr. Christopher Onken and his co-authors describe it as a “very large, unexpected needle in the haystack.”