Menu

Blog

Archive for the ‘cosmology’ category: Page 26

Sep 1, 2024

3 supermassive black holes — each weighing more than 90 million Suns located in a single galaxy

Posted by in categories: cosmology, mapping, physics

In the study, an international team of astronomers identified three supermassive black holes lurking near the center of galaxy NGC 6,240, which has been visibly disturbed by the gravitational effects of a triple merger. Because NGC 6,240 is so close—just 300 million light-years away—astronomers had previously assumed that its odd shape was the product of a typical merger between two galaxies. They believed that these two galaxies collided as they increased to hundreds of miles per second, and that they are still combining. Therefore, the researchers expected to find two supermassive black holes hiding near the center of the cosmic collision.

Instead, the team discovered three supermassive black holes, each weighing more than 90 million Suns, when they used 3D mapping techniques to peer into the core of NGC 6240. (To put this into perspective, Sagittarius A*, the supermassive black hole at the center of the Milky Way, is roughly 4 million solar masses in weight.) Furthermore, the three massive black holes of NGC 6,240 are confined to an area that is less than 3,000 light-years across, or less than 1% of the galaxy in which they are found.

“Up until now, such a concentration of three supermassive black holes had never been discovered in the universe,” said study co-author Peter Weilbacher of the Leibniz Institute for Astrophysics Potsdam in a press release. This is the first time that scientists have seen a group of supermassive black holes packed into such a small area, despite the fact that they have previously discovered three distinct galaxies and the black holes that are connected to them on a collision course.

Sep 1, 2024

Dark matter and dark energy may really be one “dark fluid” with negative mass

Posted by in categories: cosmology, particle physics

The Standard Model of particle physics is currently our best understanding of how the universe works – but it only describes about five percent of everything in it. The rest is made up of what we call dark matter and dark energy, which are so far only known through their gravitational interactions with regular matter. Now, an astrophysicist from Oxford has put forward a new theory that suggests that dark matter and dark energy are actually part of the same phenomenon: a “dark fluid” with negative mass that fills the universe.

In a way, dark matter and dark energy are both placeholder concepts, plugging holes between the Standard Model and what we actually observe. For instance, the observed movement and distribution of galaxies doesn’t make sense if their mass is limited to the stuff we can see. Since the 1930s, this hidden extra mass has been dubbed dark matter.

Dark energy is a more recent concept. The observation that the expansion of the universe seems to be accelerating was only made in 1998, when it was discovered that more distant objects are moving away from us faster than those closer by. The mysterious force that drives this, which we still know very little about, is now referred to as dark energy.

Sep 1, 2024

Physicist theorizes that dark matter is a superfluid

Posted by in category: cosmology

A hypothesis by Justin Khoury of the Department of Physics and Astronomy stands to shake up how scientists consider dark matter.

Aug 31, 2024

Scientists Discovered Something Kinda Alarming: The Universe Shouldn’t Actually Exist

Posted by in category: cosmology

These models are very, very wrong.

Aug 30, 2024

What if you Flew Your Warp Drive Spaceship into a Black Hole?

Posted by in categories: cosmology, space travel

Warp drive space ships don’t exist now, but two researchers looked into what might happen if one crossed into a black hole.

Aug 30, 2024

Dark matter experiment delves into Earth’s underbelly, sets records

Posted by in categories: cosmology, particle physics

AUSTIN (KXAN) — The most sensitive dark matter detector in the world is showing results in the hunt for the hypothetical particle. The results: they can’t find it.

“If you think of the search for dark matter like searching for buried treasure,” said Scott Kravitz, an associate professor in the physics department at the University of Texas, “we’ve basically dug part of the way down to where it might be, it could still be deeper below what we’ve searched so far.”

Kravitz is part of the LEX-ZEPLIN project, a Department of Energy hunt for dark matter in a cavern in South Dakota.

Aug 30, 2024

Using atomic excitations to measure the rotation of spacetime

Posted by in categories: cosmology, particle physics

How would atoms behave near a supermassive object? We know how atoms behave in extremely weak gravity like that at the Earth’s surface: They can be excited from a lower energy level to a higher one when an electron absorbs a photon or a nucleus absorbs a gamma ray, and so on. But what if the atom is in a strong gravitational field such as one near a supermassive, rotating black hole or rotating neutron star?

Aug 30, 2024

Astrophysicists harness AI to calculate the Universe’s ‘settings’ precisely

Posted by in categories: cosmology, physics, robotics/AI

The results were a significant improvement over the values produced by previous methods.

Aug 29, 2024

Dark Matter Was the Key: Astrophysicists Solve Longstanding “Final Parsec Problem”

Posted by in categories: cosmology, particle physics

Researchers have linked supermassive black hole mergers with dark matter interactions, potentially solving a longstanding astronomical problem and offering new insights into dark matter’s nature and its role in the cosmos.

Researchers have found a link between some of the largest and smallest objects in the cosmos: supermassive black holes and dark matter particles.

Continue reading “Dark Matter Was the Key: Astrophysicists Solve Longstanding ‘Final Parsec Problem’” »

Aug 29, 2024

345 GHz Observations Reveal Black Holes Like Never Before

Posted by in categories: cosmology, innovation

The Event Horizon Telescope (EHT) Collaboration has enhanced its observational capabilities, achieving unprecedented resolutions by detecting light at a 345 GHz frequency.

This breakthrough allows for detailed imaging of black holes, promising images 50% more detailed than previous ones and the potential to view more black holes than ever before.

Continue reading “345 GHz Observations Reveal Black Holes Like Never Before” »

Page 26 of 422First2324252627282930Last