Menu

Blog

Archive for the ‘cosmology’ category: Page 282

Jun 30, 2020

Hungriest of black holes among the most massive in the universe

Posted by in category: cosmology

O.,o O.O


We now know just how massive the fastest-growing black hole in the Universe actually is, as well as how much it eats, thanks to new research led by The Australian National University (ANU).

It is 34 billion times the of our sun and gorges on nearly the equivalent of one sun every day, according to Dr. Christopher Onken and his colleagues.

Continue reading “Hungriest of black holes among the most massive in the universe” »

Jun 28, 2020

Scientists spot flash of light from colliding black holes. But how?

Posted by in category: cosmology

Scientists think they identified two black holes merging that produced a burst of light.

Jun 27, 2020

Mapping the Early Universe with NASA’s Webb Telescope

Posted by in categories: cosmology, evolution, mapping

Although many other observatories, including NASA’s Hubble Space Telescope, have previously created “deep fields” by staring at small areas of the sky for significant chunks of time, the Cosmic Evolution Early Release Science (CEERS) Survey, led by Steven L. Finkelstein of the University of Texas at Austin, will be one of the first for Webb. He and his research team will spend just over 60 hours pointing the telescope at a slice of the sky known as the Extended Groth Strip, which was observed as part of Hubble’s Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey or CANDELS.

“With Webb, we want to do the first reconnaissance for galaxies even closer to the big bang,” Finkelstein said. “It is absolutely not possible to do this research with any other telescope. Webb is able to do remarkable things at wavelengths that have been difficult to observe in the past, on the ground or in space.”

Mark Dickinson of the National Science Foundation’s National Optical-Infrared Astronomy Research Laboratory in Arizona, and one of the CEERS Survey co-investigators, gives a nod to Hubble while also looking forward to Webb’s observations. “Surveys like the Hubble Deep Field have allowed us to map the history of cosmic star formation in galaxies within a half a billion years of the big bang all the way to the present in surprising detail,” he said. “With CEERS, Webb will look even farther to add new data to those surveys.”

Jun 26, 2020

After 50 Years, Experiment Finally Shows Energy Could Be Extracted From a Black Hole

Posted by in categories: cosmology, physics

A 50-year-old theoretical process for extracting energy from a rotating black hole finally has experimental verification.

Using an analogue of the components required, physicists have shown that the Penrose process is indeed a plausible mechanism to slurp out some of that rotational energy — if we could ever develop the means.

That’s not likely, but the work does show that peculiar theoretical ideas can be brilliantly used to explore the physical properties of some of the most extreme objects in the Universe.

Jun 26, 2020

CERN experiment makes first observation of rare events producing three massive force carriers

Posted by in categories: cosmology, particle physics

Modern physics knows a great deal about how the universe works, from the grand scale of galaxies down to the infinitesimally small size of quarks and gluons. Still, the answers to some major mysteries, such as the nature of dark matter and origin of gravity, have remained out of reach.

Caltech physicists and their colleagues using the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland, the largest and most powerful particle accelerator in existence, and its Compact Muon Solenoid (CMS) experiment have made a new observation of very that could help take physics beyond its current understanding of the world.

The new observation involves the simultaneous production of three W or Z bosons, subatomic “mediator particles” that carry the weak force—one of the four known —which is responsible for the phenomenon of radioactivity as well as an essential ingredient in the sun’s thermonuclear processes.

Jun 25, 2020

A Quantum Signature for the Cosmos

Posted by in categories: cosmology, quantum physics

Certain galaxy patterns might encode whether the Universe’s primordial density fluctuations were quantum or classical in nature.

Jun 24, 2020

GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object

Posted by in categories: cosmology, physics

R. Abbott 1, T. D. Abbott 2, S. Abraham 3, F. Acernese 4,5, K. Ackley 6, C. Adams 7, R. X. Adhikari 1, V. B. Adya 8, C. Affeldt 9,10, M. Agathos 11,12, K. Agatsuma13, N. Aggarwal 14, O. D. Aguiar 15, A. Aich 16, L. Aiello 17,18, A. Ain 3, P. Ajith 19, S. Akcay 11,20, G. Allen 21, A. Allocca 22, P. A. Altin 8, A. Amato 23, S. Anand 1, A. Ananyeva 1, S. B. Anderson 1, W. G. Anderson 24, S. V. Angelova 25, S. Ansoldi 26,27, S. Antier 28, S.

Jun 24, 2020

Gamma ray patterns hint at galaxies with two supermassive black holes

Posted by in category: cosmology

Astronomers investigating gamma ray emissions have discovered that certain active galaxies seem to be giving off bursts in regular patterns. This, the team says, could be an indication of galaxies harboring two supermassive black holes in their centers.

Conventional thinking says that lurking at the heart of most galaxies is a supermassive black hole. The Milky Way is the perfect example – Sagittarius A lies about 26,000 light-years from Earth and has a mass about 4 million times that of the Sun.

While it’s generally thought that galaxies would only host one supermassive black hole, the idea that some could have two has been theoretically possible. And now, an international team of researchers has found what could be the first evidence of this scenario.

Jun 24, 2020

Physicists Peer Inside a Fireball of Quantum Matter

Posted by in categories: cosmology, particle physics, quantum physics

A gold wedding band will melt at around 1,000 degrees Celsius and vaporize at about 2,800 degrees, but these changes are just the beginning of what can happen to matter. Crank up the temperature to trillions of degrees, and particles deep inside the atoms start to shift into new, non-atomic configurations. Physicists seek to map out these exotic states — which probably occurred during the Big Bang, and are believed to arise in neutron star collisions and powerful cosmic ray impacts — for the insight they provide into the cosmos’s most intense moments.

Now an experiment in Germany called the High Acceptance DiElectron Spectrometer (HADES) has put a new point on that map.

For decades, experimentalists have used powerful colliders to crush gold and other atoms so tightly that the elementary particles inside their protons and neutrons, called quarks, start to tug on their new neighbors or (in other cases) fly free altogether. But because these phases of so-called “quark matter” are impenetrable to most particles, researchers have studied only their aftermath. Now, though, by detecting particles emitted by the collision’s fireball itself, the HADES collaboration has gotten a more direct glimpse of the kind of quark matter thought to fill the cores of merging neutron stars.

Jun 24, 2020

LIGO and Virgo detected a black hole colliding with a mystery object

Posted by in category: cosmology

The first evidence of an object more massive than any neutron star and more lightweight than any black hole has astronomers wondering what it is.