Toggle light / dark theme

Bartosz Regula from the RIKEN Center for Quantum Computing and Ludovico Lami from the University of Amsterdam have shown, through probabilistic calculations, that there is indeed, as had been hypothesized, a rule of “entropy” for the phenomenon of quantum entanglement. This finding could help drive a better understanding of quantum entanglement, which is a key resource that underlies much of the power of future quantum computers. Little is currently understood about the optimal ways to make an effective use of it, despite it being the focus of research in quantum information science for decades.

The second law of thermodynamics, which says that a system can never move to a state with lower “entropy”, or order, is one of the most fundamental laws of nature, and lies at the very heart of physics. It is what creates the “arrow of time,” and tells us the remarkable fact that the dynamics of general physical systems, even extremely complex ones such as gases or black holes, are encapsulated by a single function, its “entropy.”

There is a complication, however. The principle of entropy is known to apply to all classical systems, but today we are increasingly exploring the quantum world. We are now going through a quantum revolution, and it becomes crucially important to understand how we can extract and transform the expensive and fragile quantum resources.

Black holes, white holes, wormholes, anti-universes, and all kinds of awesome relativity weirdness:


Einstein was wrong about black holes, what else? Use code veritasium at the link below to get an exclusive 60% off an annual Incogni plan: https://incogni.com/veritasium.

A massive thank you to Prof. Geraint F. Lewis and Prof. Juan Maldacena for their expertise and help with this video.

A huge thank you to those who helped us understand this complicated topic: Dr. Suddhasattwa Brahma, Prof. Carlo Rovelli, Dr. Hal Haggard, Prof. Martin Bojowald, Dr. Francesca Vidotto, Prof. Andrew Hamilton, and Dr. Carl-Fredrik Nyberg Brodda.

A special thanks to Alessandro Roussel from ScienceClic for his spectacular simulations and feedback on the video. Check out his channel here: https://ve42.co/ScienceClic.

Explorations in dark matter are advancing with new experimental techniques designed to detect axions, leveraging advanced technology and interdisciplinary collaboration to uncover the secrets of this elusive component of the cosmos.

A ghost is haunting our universe. This has been known in astronomy and cosmology for decades. Observations suggest that about 85% of all the matter in the universe is mysterious and invisible. These two qualities are reflected in its name: dark matter.

Several experiments have aimed to unveil what it’s made of, but despite decades of searching, scientists have come up short. Now our new experiment, under construction at Yale University in the US, is offering a new tactic.

Researchers utilizing the European Gaia spacecraft have discovered a black hole in a binary system, located 1,500 light-years away and weighing 33 times the mass of the sun, making it the heaviest known in the Milky Way.

The black hole, discovered using data from the European Gaia spacecraft, is more than three times heavier than the known black holes in our galaxy.

An international team of researchers, with the participation of researchers from Tel Aviv University (TAU) led by Prof. Tsevi Mazeh, discovered a star that orbits a black hole 33 times heavier than the sun’s mass, and lies 1,500 light-years away from Earth. The black hole, discovered using data from the European Gaia spacecraft, is more than three times heavier than the other known black holes in our galaxy.

It turns out that such cannibalism cannot explain the missing pulsar problem, according to Caizzo. “We found that in our current model PBHs are not able to disrupt these objects but this is only considering our simplified model of 2 body interactions,” he said. It doesn’t rule out the existence of PHBs, only that in specific instances, such capture isn’t happening.

So, what’s left to examine? If there are PHBs in the cores and they’re merging, no one’s seen them yet. But, the center of the Galaxy is a busy place. A lot of bodies crowd the central parsecs. You have to calculate the effects of all those objects interacting in such a small space. That “many-body dynamics” problem has to account for other interactions, as well as the dynamics and capture of PBHs.

Astronomers looking to use PBH-neutron star mergers to explain the lack of pulsar observations in the core of the Galaxy will need to better understand both the proposed observations and the larger populations of pulsars. The team suggests that future observations of old neutron stars close to Sgr A could be very useful. They’d help set stronger limits on the number of PBHs in the core. In addition, it would be useful to get an idea of the masses of these PBHs, since those on the lower end (asteroid-mass types) could interact very differently.

Most models for the overall shape and geometry of the Universe—including some exotic ones—are compatible with the latest cosmic observations.

Is the Universe simply connected like a sphere or does it contain holes like a doughnut or a more complicated structure? The topology of the Universe—that is, its overall geometry—remains far from settled, according to a collaboration of cosmologists. Despite past claims that observations of the cosmic microwave background (CMB) rule out various topologies, the researchers contend that many of these shapes, including some strange ones, have not been contradicted by the evidence [1].

The overall geometry of the Universe is thought to have been determined by quantum processes that unfolded in the initial moment of the big bang. Identifying the topology of the Universe would provide researchers with an important clue as to the nature of those quantum processes and could help them sift through the many proposed theories of the early Universe.