Menu

Blog

Archive for the ‘electronics’ category: Page 5

Jul 3, 2024

‘Acceleration beats’ shine bright light on a novel universal modulation regime in a semiconductor-based laser

Posted by in categories: electronics, quantum physics

Researchers at the Paul-Drude-Institute for Solid State Electronics (PDI) have observed a novel modulation regime characterized by the emergence of previously unseen “acceleration beats” in a modulated semiconductor-based laser.

As they detail in a paper published today in Nature Communications, the key—and somewhat counterintuitive—feature of this novel regime is the ability to coherently manipulate using modulation periods longer than the coherence time, provided that the modulation amplitude is large enough.

Harmonic modulation of light sources, such as lasers, is the cornerstone of many modern and emergent telecommunications technologies. In this regard, two regimes of modulation are well-known: the adiabatic regime and the non-adiabatic regime.

Jul 3, 2024

Trillionth of a Second Shutter Speed Camera Captures Chaos in Action

Posted by in categories: electronics, materials

To take a picture, the best digital cameras on the market open their shutter for around around one four-thousandths of a second.

To snapshot atomic activity, you’d need a shutter that clicks a lot faster.

With that in mind, scientists have unveiled a way of achieving a shutter speed that’s a mere trillionth of a second, or 250 million times faster than those digital cameras. That makes it capable of capturing something very important in materials science: dynamic disorder.

Jul 2, 2024

Tesla Patents Robotaxi Sanitization System — Reveals How It Will Work

Posted by in category: electronics

Tesla’s new patent reveals an advanced sanitization system for Robotaxis, ensuring clean interiors using sensors, UV light, and HVAC methods.

Jun 25, 2024

Transistors explained – what they are and what they do

Posted by in categories: computing, electronics

Transistors are semiconductor devices that regulate current, amplify signals, and act as switches, forming the foundation of modern electronics.

Jun 24, 2024

Speeding through the microcosm: Insights into ultrafast electron and lattice dynamics

Posted by in categories: electronics, particle physics

A study has unlocked new dimensions in understanding the ultrafast processes of charge and energy transfer at the microscale. The research delves into the dynamics of microscopic particles, providing insights that could revolutionize semiconductor and electronic device development.

Jun 22, 2024

Controlling electronics with light: Ultrafast lasers manipulate magnetite’s structure

Posted by in categories: electronics, materials

Researchers at EPFL have discovered that by shining different wavelengths (colors) of light on a material called magnetite, they can change its state, e.g., making it more or less conducive to electricity. The discovery could lead to new ways of designing new materials for electronics such as memory storage, sensors, and other devices that rely on fast and efficient material responses.

Jun 19, 2024

Tiny Implant Revolutionizes Treatment For Heart Failure Patients

Posted by in categories: biotech/medical, electronics

A groundbreaking way of measuring fluid buildup in the body allows chronic heart failure patients to monitor their condition and treat it independently with a physician-approved response.

Tel Aviv-based startup Vectorious has created a tiny pressure sensor that is implanted directly into the heart. It is the only sensor in the world that measures the pressure in the left atrium (one of the heart’s two upper chambers) and is able to identify increases in that pressure caused by a buildup of fluid in the body.

This data on the left atrial pressure (LAP) is then transmitted to an app for the patient and their doctor.

Jun 18, 2024

Study proposes new constraints on exotic spin-spin-velocity-dependent interactions between electron spins

Posted by in categories: electronics, quantum physics

A research team has utilized solid-state spin quantum sensors to scrutinize exotic spin-spin-velocity-dependent interactions (SSIVDs) at short force ranges, reporting new experimental results between electron spins. Their work has been published in Physical Review Letters.

Jun 11, 2024

Novel quantum sensor breaks limits of optical measurement using entanglement

Posted by in categories: electronics, quantum physics

The Korea Research Institute of Standards and Science (KRISS) has developed a novel quantum sensor technology that allows the measurement of perturbations in the infrared region with visible light by leveraging the phenomenon of quantum entanglement. This will enable low-cost, high-performance IR optical measurement, which previously accompanied limitations in delivering quality results.

Jun 1, 2024

Powering Next-Gen Electronics: Scientists Find High-Performance Alternative to Conventional Ferroelectrics

Posted by in categories: electronics, materials

Lighting a gas grill, getting an ultrasound, using an ultrasonic toothbrush ⎯ these actions involve the use of materials that can translate an electric voltage into a change in shape and vice versa.

Known as piezoelectricity, the ability to trade between mechanical stress and electric charge can be harnessed widely in capacitors, actuators, transducers, and sensors like accelerometers and gyroscopes for next-generation electronics. However, integrating these materials into miniaturized systems has been difficult due to the tendency of electromechanically active materials to ⎯ at the submicrometer scale, when the thickness is just a few millionths of an inch ⎯ get “clamped” down by the material they are attached to, which significantly dials down their performance.

Rice University researchers and collaborators at the University of California, Berkeley have found that a class of electromechanically active materials called antiferroelectrics may hold the key to overcoming performance limitations due to clamping in miniaturized electromechanical systems. A new study published in Nature Materials reports that a model antiferroelectric system, lead zirconate (PbZrO3), produces an electromechanical response that can be up to five times greater than that of conventional piezoelectric materials even in films that are only 100 nanometers (or 4 millionths of an inch) thick.

Page 5 of 105First23456789Last