Menu

Blog

Archive for the ‘energy’ category: Page 8

Dec 4, 2024

‘Accidental discovery’ creates candidate for universal memory — a weird semiconductor that consumes a billion times less power

Posted by in category: energy

A chance discovery by researchers could drastically lower the energy needed for next-generation memory technologies.

Dec 4, 2024

China turns waste oil into supercapacitors with 86.5% efficiency

Posted by in categories: energy, sustainability

Scientists in China have claimed a breakthrough that might completely change how we store energy by turning waste oil into a formidable substance for energy storage.

As the world grapples with increasing power demand, supercapacitors are becoming more popular because of their quick charging and discharging times, which makes them perfect for high-performance applications.

The researcher’s novel method provides a sustainable way to make these supercapacitors while addressing waste management and energy storage challenges, according to a press release by the Chinese Academy of Sciences (CAS).

Dec 1, 2024

Catalysis Reinvented: New Ultra-Thin Nanosheets To Drive Green Energy

Posted by in categories: energy, nanotechnology

Nagoya University researchers have pioneered a surfactant-based method to create amorphous nanosheets, enabling production from previously inaccessible materials like aluminum and rhodium oxides.

Researchers at Nagoya University in Japan have addressed a significant challenge in nanosheet technology. Their innovative approach employs surfactants to produce amorphous nanosheets from various materials, including difficult-to-synthesize ultra-thin amorphous metal oxides such as aluminum and rhodium. This breakthrough, published in Nature Communications, sets the stage for future advances in the application of these nanosheets such as those used within fuel cells.

The upcoming generation of nanotechnology requires components that are just a few nanometers thick (one billionth of a meter). These ultrathin layers, which are essential for improving functionality, are known as nanosheets.

Nov 30, 2024

New hybrid catalyst developed for clean oxygen production

Posted by in categories: chemistry, energy, sustainability

A research team at the Institute of Materials Chemistry at TU Wien, led by Professor Dominik Eder, has developed a new synthetic approach to create durable, conductive and catalytically active hybrid framework materials for (photo)electrocatalytic water splitting. The study is published in Nature Communications.

The development of technologies for sustainable energy carriers, such as hydrogen, is essential. A promising way to produce hydrogen (H2) is from splitting water into H2 and oxygen (O2), either electrochemically or using light, or both—a path that the team follows. However, this process requires a catalyst that accelerates the reaction without being consumed. Key criteria for a catalyst include a large surface area for the adsorption and splitting of water molecules, and durability for .

Zeolitic imidazolate frameworks (ZIFs), a class of hybrid organic/inorganic materials with molecular interfaces and numerous pores, offer record surface areas and ample adsorption sites for water as catalysts. They consist of single metal ions, such as cobalt ions, which are connected by specific organic molecules, called ligands, through what is called coordination bonds. Conventional ZIFs only contain a single type of organic ligand.

Nov 30, 2024

An unexpected delay in a standard quantum optical process generates pairs of photons

Posted by in categories: encryption, energy, quantum physics

Since it was first demonstrated in the 1960s, spontaneous parametric down-conversion (SPDC) has been at the center of many quantum optics experiments that test the fundamental laws of physics in quantum mechanics, and in applications like quantum simulation, quantum cryptography, and quantum metrology.

SPDC is the spontaneous splitting of a photon into two after it passes through a nonlinear object like certain crystals. The process is nonlinear and instantaneous, and the two output photons (called the signal photon and idler photon) satisfy conservation of energy and momentum compared to the input photon (the pump photon). SPDC is often used with a specially designed crystal to create pairs of entangled photons.

A research team from Canada has discovered that there is a delay between the detection of the two output photons, one that depends on the intensity of the incoming light that impacts the crystal. They call this a “gain-induced group delay.”

Nov 29, 2024

New EV battery goes 1 million miles, handles extreme —22°F to 149°F

Posted by in category: energy

China-based Farasis Energy has created a 1,000,000-mile lifespan battery that operates well at various temperatures.

Nov 29, 2024

How Magnetic Waves Become Heat in Earth’s Magnetosphere

Posted by in categories: energy, space

Ocean currents spin off huge gyres, whose kinetic energy is transferred to ever-smaller turbulent structures until viscosity has erased velocity gradients and water molecules jiggle with thermal randomness. A similar cascade plays out in space when the solar wind slams into the magnetopause, the outer boundary of Earth’s magnetic field. The encounter launches large-scale magnetic, or Alfvén, waves whose energy ends up heating the plasma inside the magnetosphere. Here, however, the plasma is too thin for viscosity to mediate the cascade. Since 1971 researchers have progressively developed their understanding of how Alfvén waves in space plasmas generate heat. These studies later culminated in a specific hypothesis: Alfvén waves accelerate ion beams, which create small-scale acoustic waves, which generate heat. Now Xin An of UCLA and his collaborators have found direct evidence of that proposed mechanism [1]. What’s more, the mechanism is likely at work in the solar wind and other space plasmas.

Laboratory-scale experiments struggle to capture the dynamics of rotating plasmas, and real-world observations are even more scarce. The observations that An and his collaborators analyzed were made in 2015 by the four-spacecraft Magnetospheric Multiscale (MMS) mission. Launched that year, the MMS was designed to study magnetic reconnection, a process in which the topology of magnetic-field lines is violently transformed. The field rearrangements wrought by reconnection can be large, on the scale of the huge loops that sprout from the Sun’s photosphere. But the events that initiate reconnection take place in a much smaller region where neighboring field lines meet, the X-line. The four spacecraft of MMS can fly in a configuration in which all of them witness the large-scale topological transformation while one of them could happen to fly through the X-line—a place where no spacecraft had deliberately been sent before.

On September 8, 2015, the orbits of the MMS spacecraft took them through the magnetopause on the dusk side of Earth. They were far enough apart that together they could detect the passage of a large-scale Alfvén wave, while each of them could individually detect the motion of ions in the surrounding plasma. An and his collaborators later realized that these observations could be used to test the theory that ion beams and the acoustic waves that they generate mediate the conversion of Alfvén-wave energy to heat.

Nov 29, 2024

Researchers find a possible solution to the cosmic ray muon puzzle

Posted by in categories: energy, physics

Scientists have a problem with cosmic rays—they produce too many muons at the Earth’s surface. Cascades of muons are byproducts of high-energy cosmic rays as they collide with nuclei in the upper atmosphere, and scientists see more muons at Earth’s surface than standard physics models predict.

Nov 28, 2024

Unlocking Atomic Secrets: High-Power X-Rays Illuminate the Invisible

Posted by in categories: energy, innovation

Scientists made a major advancement in X-ray science by creating high-power attosecond hard X-ray pulses with megahertz repetition rates, allowing for ultrafast electron dynamics study and atomic-level non-destructive measurements.

These pulses are significant due to their ability to capture quick electron movements, leading to potential applications in attosecond crystallography and transformative impacts across various scientific disciplines.

Breakthrough in X-Ray Pulse Technology.

Nov 28, 2024

Cooling With Light: Solid-State Optical Cooling Using Quantum Dots

Posted by in categories: energy, quantum physics

https://www.eurekalert.org/news-releases/1065953

Researchers have explored a fascinating cooling phenomenon within halide perovskite-based “dots-in-crystal” materials, uncovering both their promise and challenges.

In a groundbreaking study, scientists from Chiba University investigated the potential of solid-state optical cooling through perovskite quantum dots. Central to their research was anti-Stokes photoluminescence, a rare process where materials emit photons with higher energy than those absorbed. This innovative approach could transform cooling technology, offering a path to more efficient, energy-saving solutions. Their work not only highlights the immense promise of this technique but also reveals key limitations that pave the way for further advancements in the field.

Page 8 of 372First56789101112Last