Menu

Blog

Archive for the ‘engineering’ category: Page 173

Nov 9, 2018

New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery

Posted by in categories: biotech/medical, engineering, wearables

Purdue University researchers have developed a new flexible and translucent base for silicon nanoneedle patches to deliver exact doses of biomolecules directly into cells and expand observational opportunities.

“This means that eight or nine nanoneedles can be injected into a single cell without significantly damaging a cell. So we can use these nanoneedles to deliver biomolecules into cells or even tissues with minimal invasiveness,” said Chi Hwan Lee, an assistant professor in Purdue University’s Weldon School of Biomedical Engineering and School of Mechanical Engineering.

A surgeon performs surgery on the back of a hand of a patient who has melanoma. Purdue researchers are developing a new flexible and translucent base for silicon patches to deliver exact doses of biomolecules directly into cells and expand observational opportunities. The researchers say skin cancer could be one of the applications for the patches.

Continue reading “New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery” »

Nov 8, 2018

How science fared in the midterm elections

Posted by in categories: biotech/medical, engineering, government, science

This year, more candidates with degrees in science, medicine and engineering ran for Congress than ever before. Of the nearly two-dozen new candidates in this crop, at least seven won seats in the House of Representatives.


This year, scientists, doctors and engineers ran for office like never before. Here’s how they did.

Read more

Nov 6, 2018

Japan Develops World’s First Test to Detect Cancer via Urine Samples

Posted by in categories: biotech/medical, engineering

Scientists in Japan have developed the world’s first test that can detect cancers in patient urine samples. The breakthrough technology by Japanese researchers from engineering firm Hitachi has been in development for two years and it may be made available by 2020.

According to Agence France-Presse, the research team will work with Nagoya University to analyze 250 urine samples to check for breast, colon, and childhood forms of the disease in central Japan. The experiments will begin this month and end in September.

Continue reading “Japan Develops World’s First Test to Detect Cancer via Urine Samples” »

Nov 5, 2018

Scientists Are About to Redefine the Kilogram

Posted by in categories: engineering, particle physics, transportation

The kilogram is one of the most important and widely used units of measure in the world — unless you live in the US. For everyone else, having an accurate reading on what a kilogram is can be vitally important in fields like manufacturing, engineering, and transportation. Of course, a kilogram is 1,000 grams or 2.2 pounds if you want to get imperial. That doesn’t help you define a kilogram, though. The kilogram is currently controlled by a metal slug in a French vault, but its days of importance are numbered. Scientists are preparing to re define the kilogram using science.

It’s actually harder than you’d expect to know when a measurement matches the intended standard, even when it’s one of the well–define d Systéme International (SI) units. For example, the meter was originally define d in 1793 as one ten-millionth the distance from the equator to the north pole. That value was wrong, but the meter has since been re define d in more exact terms like krypton-86 wavelength emissions and most recently the speed of light in a vacuum. The second was previously define d as a tiny fraction of how long it takes the Earth to orbit the sun. Now, it’s pegged to the amount of time it takes a cesium-133 atom to oscillate 9,192,631,770 times. Again, this is immutable and extremely precise.

That brings us to the kilogram, which is a measurement of mass. Weight is different and changes based on gravity, but a kilogram is always a kilogram because it comes from measurements of density and volume. The definition of the kilogram is tied to the International Prototype of the Kilogram (IPK, see above), a small cylinder of platinum and iridium kept at the International Bureau of Weights and Measures in France. Scientists have created dozens of copies of the IPK so individual nations can standardize their measurements, but that’s a dangerous way to go about it. If anything happened to the IPK, we wouldn’t have a standard kilogram anymore.

Continue reading “Scientists Are About to Redefine the Kilogram” »

Nov 3, 2018

In a Land of Quakes, Engineering a Future for a Church Made of Mud

Posted by in categories: engineering, futurism

High in the Andes Mountains, conservators are testing traditional methods for strengthening adobe buildings.

The bell tower of the church of Santiago Apóstol in Kuño Tambo, Peru. Built by the Spanish in 1681, it has been weakened by earthquakes, but traditional techniques are helping with its restoration. Credit Credit Angela Ponce for The New York Times.

Read more

Nov 3, 2018

Manta rays feed using ricochet separation, a novel nonclogging filtration mechanism

Posted by in categories: biological, engineering, particle physics

Solid-liquid filtration is a ubiquitous process found in industrial and biological systems. Although implementations vary widely, almost all filtration systems are based on a small set of fundamental separation mechanisms, including sieve, cross-flow, hydrosol, and cyclonic separation. Anatomical studies showed that manta rays have a highly specialized filter-feeding apparatus that does not resemble previously described filtration systems. We examined the fluid flow around the manta filter-feeding apparatus using a combination of physical modeling and computational fluid dynamics. Our results indicate that manta rays use a unique solid-fluid separation mechanism in which direct interception of particles with wing-like structures causes particles to “ricochet” away from the filter pores. This filtration mechanism separates particles smaller than the pore size, allows high flow rates, and resists clogging.

Several fundamental mechanisms for solid-fluid separation have been described in the biological and engineering literature, including sieve (1, 2), cross-flow (3–6), hydrosol , and cyclonic separation. Sieve filtration passes a mixture of particles and fluid through a structure with regularly sized pores, causing the particles to be retained while the fluid is drained. Although effective, sieve filters must have pore sizes smaller than the particle size, and they inevitably clog in use (2, 8, 9). Cross-flow filtration is similar to sieving, except that the incoming flow runs parallel rather than perpendicular to the filter. This configuration shears captured particles off the filter’s surface, which reduces but does not eliminate clogging (5, 6). Unlike sieve and cross-flow filters, hydrosol and cyclonic filtration do not require regularly sized pores.

Read more

Nov 1, 2018

#DidYouKnow: NASA Dawn Mission is the only spacecraft that has ever orbited two worlds beyond Earth

Posted by in categories: engineering, space travel

#DidYouKnow : NASA Dawn Mission is the only spacecraft that has ever orbited two worlds beyond Earth. Watch our experts discuss 11 years of scientific discovery, breathtaking imagery and unprecedented feats of engineering from the mission: https://go.nasa.gov/2qlECc9

Read more

Oct 30, 2018

190 universities just launched 600 free online courses. Here’s the full list

Posted by in categories: biotech/medical, business, computing, education, engineering, health

If you haven’t heard, universities around the world are offering their courses online for free (or at least partially free). These courses are collectively called MOOCs or Massive Open Online Courses.

In the past six years or so, over 800 universities have created more than 10,000 of these MOOCs. And I’ve been keeping track of these MOOCs the entire time over at Class Central, ever since they rose to prominence.

In the past four months alone, 190 universities have announced 600 such free online courses. I’ve compiled a list of them and categorized them according to the following subjects: Computer Science, Mathematics, Programming, Data Science, Humanities, Social Sciences, Education & Teaching, Health & Medicine, Business, Personal Development, Engineering, Art & Design, and finally Science.

Continue reading “190 universities just launched 600 free online courses. Here’s the full list” »

Oct 21, 2018

Silicon Valley’s Newest Venture Is The Search For Immortality

Posted by in categories: biological, engineering, life extension

The Silicon Valley mindset combines biology and engineering: The body is a machine to be hacked and improved.


Futurists at some of the biggest tech firms want to reshape the way we think about death.

Read more

Oct 18, 2018

Scientists grow functioning human neural networks in 3D from stem cells

Posted by in categories: biotech/medical, engineering, robotics/AI

A team of Tufts University-led researchers has developed three-dimensional (3D) human tissue culture models for the central nervous system that mimic structural and functional features of the brain and demonstrate neural activity sustained over a period of many months. With the ability to populate a 3D matrix of silk protein and collagen with cells from patients with Alzheimer’s disease, Parkinson’s disease, and other conditions, the tissue models allow for the exploration of cell interactions, disease progression and response to treatment. The development and characterization of the models are reported today in ACS Biomaterials Science & Engineering, a journal of the American Chemical Society.

The new 3D brain tissue models overcome a key challenge of previous models –the availability of human source neurons. This is due to the fact that neurological tissues are rarely removed from healthy patients and are usually only available post-mortem from diseased patients. The 3D tissue models are instead populated with human induced (iPSCs) that can be derived from many sources, including patient skin. The iPSCs are generated by turning back the clock on cell development to their embryonic-like precursors. They can then be dialed forward again to any cell type, including neurons.

The 3D brain tissue models were the result of a collaborative effort between engineering and the medical sciences and included researchers from Tufts University School of Engineering, Tufts University School of Medicine, the Sackler School of Graduate Biomedical Sciences at Tufts, and the Jackson Laboratory.

Continue reading “Scientists grow functioning human neural networks in 3D from stem cells” »