Menu

Blog

Archive for the ‘engineering’ category: Page 248

Jan 1, 2013

2012 was Great and may 2013 be Extraordinary

Posted by in categories: business, education, engineering, ethics, fun, human trajectories, lifeboat, media & arts, open access, open source, policy, scientific freedom, space, transparency

May peace break into your home and may thieves come to steal your debts.
May the pockets of your jeans become a magnet for $100 bills.
May love stick to your face like Vaseline and may laughter assault your lips!
May happiness slap you across the face and may your tears be that of joy
May the problems you had, forget your home address!

In simple words .….….……May 2013 be EXTRAORDINARY … the best year of your life!!! Simply the best New Year greeting anyone has sent to me. This was from Robert White of Extraordinary People.

This morning I checked the Lifeboat stats for 2012. When I started blogging for Lifeboat at the end of July, we ended July 2012 with 42,771 unique visitors. We closed 2012 with 90,920 unique visitors for the month December. Wow! Our blogging has become more relevant, and more thought provoking. As a community of bloggers (with the exception of one) we have moved away from the 3 Cs of pseudoscience. Clouding the field. Confusing the public’s perception. Chasing away talent.

How did we do this? By backing up our discussions with hard facts, robust debate and real numbers. From years if not decades of investigation in our field of research. By speaking from our own unique experience. By sharing that unique experience with our readers.

Continue reading “2012 was Great and may 2013 be Extraordinary” »

Dec 30, 2012

Gravity Modification – New Tools

Posted by in categories: business, cosmology, defense, education, engineering, general relativity, particle physics, philosophy, physics, policy, space

To understand why gravity modification is not yet a reality, let’s analyze other fundamental discoveries/inventions that changed our civilization or at least the substantially changed the process of discovery. There are several that come to mind, the atomic bomb, heavier than air manned flight, the light bulb, personal computers, and protein folding. There are many other examples but these are sufficient to illustrate what it takes. Before we start, we have to understand four important and related concepts.

(1) Clusters or business clusters, first proposed by Harvard prof. Michael Porter, “a business cluster is a geographic concentration of interconnected businesses, suppliers, and associated institutions in a particular field. Clusters are considered to increase the productivity with which companies can compete, nationally and globally”. Toyota City which predates Porter’s proposal, comes to mind. China’s 12 new cities come to mind, and yes there are pro and cons.

Continue reading “Gravity Modification – New Tools” »

Dec 28, 2012

Forty Tons of Plutonium for Bomb Propulsion?

Posted by in categories: defense, engineering, existential risks, military, nuclear energy, nuclear weapons, space

http://news.yahoo.com/nowhere-japans-growing-plutonium-stockpile-064038796.html

A half century after being developed, nuclear pulse propulsion remains the only practical system of interplanetary travel. What is required to launch a bomb propelled mission to the outer solar system? Well, first you need.…..bombs.

There is no shortage of bomb material on planet Earth. The problem is lack of a vehicle that can get this material to the nearest place a nuclear mission can be launched; the Moon. For over a quarter of a century a launch vehicle capable of sending significant payloads (and people) to the Moon has been lacking. The Space Transportation System, aka the space shuttle, was a dead end as far as exploration due to the lack of funding for a Sidemount cargo version.

Now we wait on the SLS.

Continue reading “Forty Tons of Plutonium for Bomb Propulsion?” »

Dec 27, 2012

Gravity Modification – What is it?

Posted by in categories: cosmology, defense, economics, engineering, general relativity, particle physics, physics, policy, space

OK, why do we need a different technology to achieve commercial viability (as in mass space tourism) for either interplanetary or interstellar travel?

In many of my previous posts I had shown that all the currently proposed technologies or technologies to be, are either phenomenally expensive (on the order of several multiples of World GDP), bordering on the impossible or just plain conjecture. This is very unfortunate, as I was hoping that some of the proposals would at least appear realistic, but no joy. I feel very sorry for those who are funding these projects. For a refresher I have posted an updated version of the Interstellar Challenge Matrix (ICM) here which documents 5 of the 11 inconsistencies in modern physics. I give permission to my readers to use this material for non-commercial or academic uses.

I recently completed the 12-year study into the theoretical & technological feasibility of gravity modification published under the title An Introduction to Gravity Modification, 2nd Edition. For the very first time we now have a scientific definition for gravity modification:

Gravity modification is defined as the modification of the strength and/or direction of the gravitational acceleration without the use of mass as the primary source of this modification, in local space time. It consists of field modulation and field vectoring. Field modulation is the ability to attenuate or amplify a force field. Field vectoring is the ability to change the direction of this force field.

Continue reading “Gravity Modification – What is it?” »

Dec 19, 2012

The Fabulous Spaceport Colorado (Part 4)

Posted by in categories: business, economics, engineering, geopolitics, philosophy, policy, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space. Here is Part 4.

In Part 4, I dwell more into the economic concepts necessary for a spaceports’ long term success. The single most important concept one has to understand with any type of port, airport, seaport and spaceports is the concept of the hinterland economy. The hinterland economy is the surrounding local economy that the port services, either by population demographics, commercial & industrial base or transportation hub per its geographic location.

The Sweden-America model, like Westport Malaysia requires that a hinterland economy will eventually be built close to the port. Westport’s then Vice-Chairman of the Board, Gnanalingam (we called him ‘G’) whom I reported to, had the foresight, the influence and the connections within the Malaysian public sector, to encourage the infrastructure development within Pulah Indah and the neighboring locations.

The hinterland is critical to the success of the port. Therefore the key to a port’s success is the clarification of the term ‘local’ in the definition of the concept of the hinterland. When I joined Westport in 1995, a hinterland was defined as within approximately a 15 mile (24 km) radius of the port. In my opinion that was too small a segment of the economy to facilitate the success of Westport. That definition did not match up with Westport’s ambition to be a world class seaport and transshipment hub that could give PSA (Port Authority of Singapore, then largest container port in the world) a run for its money.

Continue reading “The Fabulous Spaceport Colorado (Part 4)” »

Dec 18, 2012

The Fabulous Spaceport Colorado (Part 3)

Posted by in categories: business, defense, economics, education, engineering, geopolitics, policy, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space. Here is Part 3.

In my last post I had mentioned that there were 2 business models for spaceports. I’ll name the first Sweden-America model after spaceports Sweden & America. The second, I’ll name Colorado-Singapore model after (yet to be) spaceports Colorado & Singapore.

The Sweden-America model basic premise is that spaceport ought to be built in remote locations, and then a hinterland economy is eventually built around the spaceport. This approach was originally driven by safety concerns and the need for a rocket range or vacant land for launching rockets to crash back to.

The basic premise of the Colorado-Singapore model is that launch vehicles are safe and that spaceports ought to be built close to centers of commerce and intermodal transportation networks. That is, spaceports are to be built in an existing hinterland economy.

Continue reading “The Fabulous Spaceport Colorado (Part 3)” »

Dec 16, 2012

The Fabulous Spaceport Colorado (Part 2)

Posted by in categories: business, defense, economics, engineering, policy, scientific freedom, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space. Here is Part 2.

What is a spaceport?

Wikipedia gives a very broad definition of a spaceport, that anything and everything that is used to launch vehicles into orbit, space and interplanetary missions are now termed spaceports. ICBM sites are termed launch sites. There is, however, a distinction between a military site and a commercial site. In the aviation world a military site is termed an ‘airbase’ while a commercial civilian site is termed an ‘airport’. Similarly in the marine world the respective terms are ‘naval base’ and ‘seaport’. In that vein there are ‘spacebases’ and ‘spaceports’. So bear in mind that not everything that is labeled a ‘spaceport’ is one.

As far as I can remember the term ‘spaceport’ caught the public’s imagination only recently with the advent of Spaceport America at Las Cruces, NM. So let’s clarify. A spaceport is port for launching vehicles into suborbital, orbital and interplanetary space whose primary mission is to support and manage commercial activities, not military, not government sponsored launches. And therefore, in the United States there are only 10 existing or proposed spaceports. They are (1)Mid-Atlantic Regional Spaceport, Wallops Island, VA (2)Cecil Field Spaceport, Jacksonville, FL (3)Spaceport Florida, Cape Canaveral (4)Spaceport Oklahoma, Burns Flat, OK (5)Spaceport America, Las Cruces, NM (6)Mojave Air and Spaceport, Mojave, CA (7) California Spaceport, Vandenberg Air Force Base, Lompac, CA (8)Kodiak Launch Complex, Kodiak Island, AK, (9) Spaceport Colorado, Watkins, CO and (10)Spaceport Hawaii, HI.

Continue reading “The Fabulous Spaceport Colorado (Part 2)” »

Dec 15, 2012

The Fabulous Spaceport Colorado (Part 1)

Posted by in categories: business, defense, engineering, finance, geopolitics, space

Last month a colleague of mine and I visited with Dennis Heap, Executive Director of the National Front Range Airport, at Watkins, CO, the location of the future Spaceport Colorado, and Colorado’s contribution to getting into space.

On April 19, 2012, Gov. John Hickenlooper signed a bill that limited a spaceflight entity’s liability for spaceflight participants and paved the way for Spaceport Colorado’s development. The Front Range Airport Authority situated on 3,900 acres will allocate 900 acres towards the development and construction of Spaceport Colorado and ancillary facilities. The next steps are the completion of an environmental assessment, and feasibility and marketing study. This is expected to be completed by end of 2013.

In the 1995–96 I was Head of Corporate Planning at Westport, a $1 billion seaport infrastructure project in Malaysia, where I created and deployed the 7-hour port strategy, streamlined financial controls, container handling and container tariffs, reducing incoming (wharf to gate) dwell time to zero hours compared to the then world’s largest container port, Port Authority of Singapore’s (PSA) 18-hours. Westport was able to grow substantially, to the point where, in 2011, Westport handled 6.4 million TEUs compared to PSA’s 29.9 million TEUs. (TEU = Twenty-foot Equivalent Units or half a container)

So it caught my attention when Dennis Heap said Spaceport Colorado will be 33 miles (53 km) east of the city of Denver and about 6 miles (10 km) south of Denver International Airport (DIA).

Continue reading “The Fabulous Spaceport Colorado (Part 1)” »

Dec 14, 2012

The Kline Directive: Technological Feasibility (3b)

Posted by in categories: cosmology, defense, economics, education, engineering, general relativity, particle physics, physics, scientific freedom, space

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

In a previous post on Technological Feasibility I had stated that a quick and dirty model shows that we could achieve velocity of light c by 2151 or the late 2150s. See table below.

Year Velocity (m/s) % of c
2200 8,419,759,324 2808.5%
2152 314,296,410 104.8%
2150 274,057,112 91.4%
2125 49,443,793 16.5%
2118 30,610,299 10.2%
2111 18,950,618 6.3%
2100 8,920,362 3.0%
2075 1,609,360 0.5%
2050 290,351 0.1%
2025 52,384 0.0%

That is, at the current rate of technological innovation we could as a civilization reach light speed in about 140 years. More importantly we could not even reach anywhere near that within the next 100 years. Our capability would be 6.3% of c.

The Lorentz-Fitzgerald transformation informs us light speed would require an infinite amount of energy (i.e. more than there is in the Universe!), thereby highlighting the weaknesses in these types of technological forecasting methods. But these models still serve a purpose. They provide some guidance as to what is possible and when. The operative word is guidance.

Continue reading “The Kline Directive: Technological Feasibility (3b)” »

Dec 2, 2012

The Kline Directive: Technological Feasibility (3a)

Posted by in categories: cosmology, defense, education, engineering, general relativity, particle physics, physics, policy, scientific freedom, space

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

My apologies to my readers for this long break since my last post of Nov 19, 2012. I write the quarterly economic report for a Colorado bank’s Board of Directors. Based on my quarterly reports to the Board, I gave a talk Are We Good Stewards? on the US Economy to about 35 business executives at a TiE Rockies’ Business for Breakfast event. This talk was originally scheduled for Dec 14, but had moved forward to Nov 30 because the original speaker could not make the time commitment for that day. There was a lot to prepare, and I am very glad to say that it was very well received. For my readers who are interested here is the link to a pdf copy of my slides to Are We Good Stewards?

Now back to interstellar physics and the Kline Directive. Let’s recap.

In my last four posts (2c), (2d), (2e) & (2f) I had identified four major errors taught in contemporary physics. First, to be consistent (2c) with Lorentz-Fitzgerald and Special Theory of Relativity, elementary particles contract as their energy increases. This is antithetical to string theories and explains why string theories are becoming more and more complex without discovering new empirically verifiable fundamental laws of Nature.

Continue reading “The Kline Directive: Technological Feasibility (3a)” »