Menu

Blog

Archive for the ‘engineering’ category: Page 254

Aug 12, 2012

One Hundred and Eighty Impact Craters

Posted by in categories: asteroid/comet impacts, counterterrorism, defense, economics, education, engineering, ethics, events, existential risks, futurism, geopolitics, military, nuclear weapons, space, transparency, treaties

http://phys.org/news/2012-08-impact-crater-arctic.html

They found yet another reason to build nuclear interceptors to deflect asteroids and comet impact threats.

Sooner or later something is going to hit us. It could be like Tunguska in 1908 and destroy a city instead of a forest in Siberia- or it could be like what hit the Yucatan 65 million years ago.

Except just a little bigger and nothing larger than bacteria will survive. There is nothing written anywhere that says it will not happen tomorrow.

Continue reading “One Hundred and Eighty Impact Craters” »

Aug 11, 2012

Water and Bombs again

Posted by in categories: asteroid/comet impacts, business, counterterrorism, defense, education, engineering, ethics, events, existential risks, futurism, geopolitics, habitats, human trajectories, lifeboat, media & arts, military, nuclear weapons, physics, policy, space, sustainability, transparency

This essay was posted previously last year and removed and has appeared in abridged form in the European Space Safety online Magazine and can also be found on Yahoo voices.

Several dates are cited as marking the beginning of the space age. Sputnik, October 4th, 1957, Yuri’s day April 12th, 1961, and the first successful V-2 launch by the Nazis on October 3rd, 1942, to name a few. Some prefer December 21st, 1968, when human beings first escaped the Earth’s gravitational field on Apollo 8. When studying the events that allowed man to leave Earth, future historians may agree on a date not generally associated with space flight. July 16th, 1945 was Trinity, the first nuclear weapon test. Stanislaw Ulam, a 36-year-old Polish mathematician who helped build “the gadget”, visited ground zero after the test. Ulam later conceived the idea of propelling a spaceship with atomic bombs. Near the end of his life the eccentric genius stated the idea was his greatest work.

When considering nuclear propulsion, it must be understood that space is not an ocean, though often characterized as one. The distances and conditions are not comparable. While chemical energy has allowed humankind to travel across and above the surface of Earth, the energy required to travel in space is of a different order. Water, in the form of steam, was the agent of change that brought about the industrial revolution. Fossil fuel, burned and transformed by steam into mechanical work, would radically change the world in the span of a century. What is difficult for moderns to understand is not only how limited human capabilities were before steam, but how limited they are in the present in terms of space travel. The psychological limits of human beings limit space journeys to a few years. Chemical propulsion is not capable of taking human beings to the outer solar system and back within those crew limits. The solution is a reaction one million times more powerful. Nuclear energy is to the space age as steam was to the industrial age.

Continue reading “Water and Bombs again” »

Aug 5, 2012

NASA’s live coverage of Mars rover landing

Posted by in categories: education, engineering, fun, human trajectories, media & arts, space

Here are links to NASA live broadcast of Curiosity’s landing on Mars. Curiosity is the one ton car-sized rover that NASA is landing on Mars today.

This is another step in Man’s great adventure into interstellar space. Well Done, NASA.

NASA TV: http://www.nasa.gov/multimedia/nasatv/index.html

NASA Ustream: http://www.ustream.tv/nasajpl

Continue reading “NASA's live coverage of Mars rover landing” »

Jul 12, 2012

A Resilient Logic for Hazardous Times

Posted by in categories: complex systems, economics, engineering, ethics, existential risks, nuclear weapons, policy, sustainability
“If the rate of change on the outside
exceeds the rate of change on the inside, the end is near”
- Jack Welch

Complex societies are heavily addicted to expensive, vulnerable and potentially hazardous infrastructure. We rely on a healthy environment for production of food and access to clean water. We depend on technological infrastructure for energy supplies and communications. We are deeply addicted to economic growth to support growing populations and consumption. If one of these pillars of modern society crumbles our existence will collapse like a house of cards.

The interdependencies and complexities of the system we call modern society has become so intertangled that finding a robust and simple solution to our problems has become close to impossible. Historically the cold war gave us the logic of a “balance of terror”. This logic, originally concerned with a balance of U.S. vs. Soviet military capacities, has lead to an increasingly expensive way of reducing risk and ever expanding bureaucracies to keep us “virtually safe”.

With the onset of a global economic recession, drastic climate change, deadly natural disasters, raging civil wars and diminishing natural resources we need a new logic. A set of moral laws for reducing risk and mitigating consequences applicable at a low cost from the bottom up of entire societies.

The concept of resilience is based on the idea that disasters are inevitable and a natural part of existence. Our best defense is preparedness and engineering systems that not only can withstand heavy strains but also absorb damage. The Institute for Resilient Infrastructure at the University of Leeds gives this definition of “Resilience”;

Continue reading “A Resilient Logic for Hazardous Times” »

Jul 6, 2012

Per Aspera Ad Astra

Posted by in categories: economics, education, engineering, ethics, futurism, human trajectories, philosophy, policy, rants, scientific freedom, space, sustainability, transparency

The unknown troubles and attracts us. We long to discover a reason for our existence. We look out to the stars through the darkness of space to observe phenomena incredibly far distances away. Many of us are curious about the things we see, these unknowns.

Yet, many of us look skyward and are uninspired, believing that our time and resources best be kept grounded. Despite our human-centered ideologies, our self-assured prophecies, our religious and philosophical beliefs, no existential rationale seems apparent.

We as people welcome technology into our lives and use it constantly to communicate and function. Scientific discoveries pique the interest of every citizen in every country, and technological revolutions have always preceded social and political revolutions from the creation of the internet back to man’s first use of simple tools. Leaders of nations proclaim the importance of science and discovery to our welfare to be utmost.

But what we have seen done recently contradicts these proclamations: space programs are closed; science funding for schools always falls short; and we see no emphasis of the significance of science in our modern culture. Our governments call for the best but provide capital for only the satisfactory, if even. We no longer succumb to the allure of learning simply for the sake of knowing what we once did not know. We have stopped dreaming.

Continue reading “Per Aspera Ad Astra” »

Jun 24, 2012

The Importance of NASA

Posted by in categories: business, economics, education, engineering, policy, space

America has been a spacefaring nation since 1958. Over the past fifty-three years, America overtook its first rival, the Soviet Union (spacefaring since 1957), and maintained its supremacy in the aerospace and aeronautical industries, having the most developed and successful space program, the strongest private aerospace/aeronautical industry, and the most intelligent engineers and scientists. During times where space exploration and advanced scientific research programs seem inappropriate to publicly fund and continue where economic difficulties, contested military actions, and other civil/financial issues seem to demand precedence, it needs to be promoted that NASA (National Aeronautics and Space Administration) is of immense importance to the security and welfare of the United States of America and must remain a national priority. NASA drives STEM (science, technology, engineering, and mathematics) education as well as the development of commercial and defense technologies and works with private engineering and science companies across the country, employing thousands of brilliant engineers, scientists, and technicians to ensure the safety of the American people and maintain the technological and explorational prestige this country has always possessed.

NASA’s accomplishments are inspirational to students. It is capable of orbiting people around the planet in minutes, building a space station, and placing man on the moon, and in doing so powerfully inspires individuals to aspire for careers with the organization. In order to become involved with NASA, a student must study science, technology, engineering and/or mathematics, and by creating a strong incentive for people to study these topics, demand for STEM education increases. As demand increases, more STEM programs will develop and more people will become involved in STEM disciplines. Students studying STEM subjects develop critical thinking skills and strong senses of logic to overcome various problems and conflicts. New generations of engineers and scientists will rise to replace the retiring generations and surpass them in their accomplishments, but only will do so if opportunities to take such careers exist. Should NASA decay, it won’t only be NASA careers disappearing. Jobs at firms like Lockheed Martin, The Boeing Company, Northrop Grumman, Raytheon, and SpaceX among others will be lost as well and some of these firms will face immense downsizing or possibly even be forced to shut down, severely harming motivation for younger American students to pursue a degree or career in STEM related fields.

One of the greatest positive externalities of NASA is the technology developed as ‘spin-off’ used in the commercial and defense industries. When NASA was tasked with putting man on the moon, NASA realized the Apollo capsule would need computing systems installed within it that were far greater in power and far smaller than those currently in use and therefore tasked private industry with the development of compact computing devices that later became the PC and laptop. Without NASA funding, heart rate monitors, thermal video imaging, light emitting diodes, and velcro among many other technologies would not have been developed. While current domestic debate surrounds whether or not NASA should be downsized, enlarged, or completely phased out over time, foreign countries and blocs such as China, India, and the European Space Agency are investing even more time and money into improving their programs, their educational efforts, and plan to surpass American capabilities within the near future. Technological innovation, though still very prevalent within the United States, is beginning to grow very rapidly in foreign countries and more new technologies are being imported rather than exported every day. Instead of questioning whether or not NASA is necessary, America should be questioning what seemingly impossible task NASA should be working on next. Originally, the Apollo project seemed insurmountably difficult. But when national security threats (Soviet technological capabilities during the Cold War) met technological challenges (the Apollo program), NASA proved to be an irreplaceable source of innovation and wonder that united a nation, inspired a generation with dreams of space exploration, and provided a feeling of security to millions of people who feared another devastating war.

Which is also why NASA is critically important in the defense industry as a customer. NASA helps improve private and public defense and communication technologies. The relationship between NASA and the private industry is very symbiotic. NASA develops a plan or project and administers/contracts production and testing tasks out to the private industry, challenging thousands of engineers and scientists to improve their designs and inspires technological and manufacturing developments, which in turn allow NASA to complete its mission in an efficient and effective manner. China has proven it is capable of destroying our satellites by destroying one of its own and has announced its desire to develop a space program separated from America’s influence and plans to land on the moon in 2020. India, Israel, Iran, Pakistan, Romania, Japan, and Ukraine among others have all had confirmed launches and are working to become space powers themselves, developing their own aerospace industries and programs. Iraq and North Korea have also both touted successful launches, though their success are unconfirmed. NASA helps to keep America competitive by constantly challenging private industry and by making sure its goals for space and technological development are always beyond those of other countries, which helps to prevent enemies from defeating our technologies, thus keeping us safe.

Continue reading “The Importance of NASA” »

May 25, 2012

Beyond the Heliosheath: ISM Traverse & The Local Fluff

Posted by in categories: engineering, futurism, space

It’s been a while since anyone contributed a post on space exploration here on the Lifeboat blogs, so I thought I’d contribute a few thoughts on the subject of potential hazards to interstellar travel in the future — if indeed humanity ever attempts to explore that far in space.

It is only recently that the Voyager probes provided us with some idea of the nature of the boundary of our solar system with what is commonly referred to as the local fluff, The Local Interstellar Cloud, through which we have been travelling for the past 100,000 years or so, and which we will continue to travel through for another 10,000 or 20,000 years yet. The cloud has a temperate of about 6000°C — albeit very tenuous.

We are protected by the effects of the local fluff by the solar wind and the sun’s magnetic field, the front between the two just beyond the termination shock where the solar wind slows to subsonic velocities. Here, in the heliosheath, the solar wind becomes turbulent by its interaction with the interstellar medium, and keeping the interstellar medium at bay from the inners of the solar system, the region currently under study by the Voyager 1 and Voyager 2 space probes. It has been hypothesised that there may be a hydrogen wall further out between the bow shock and the heliopause composed of ISM interacting with the edge of the heliosphere, another obstacle to consider with interstellar travel.

The short end of the stick is that what many consider ‘open space’ to traverse once we get beyond the Kuiper belt may in fact be many more mission-threatening obstacles to traverse to reach beyond our solar system. Opinions welcome. I am not an expert on this.

Apr 9, 2012

LHC-Critique Press Info: Instead of a neutral risk assessment of the LHC: New records and plans for costly upgrades at CERN

Posted by in categories: complex systems, cosmology, engineering, ethics, existential risks, futurism, media & arts, nuclear energy, particle physics, philosophy, physics, policy, scientific freedom, space, sustainability

High energy experiments like the LHC at the nuclear research centre CERN are extreme energy consumers (needing the power of a nuclear plant). Their construction is extremely costly (presently 7 Billion Euros) and practical benefits are not in sight. The experiments eventually pose existential risks and these risks have not been properly investigated.

It is not the first time that CERN announces record energies and news around April 1 – apparently hoping that some critique and concerns about the risks could be misinterpreted as an April joke. Additionally CERN regularly starts up the LHC at Easter celebrations and just before week ends, when news offices are empty and people prefer to have peaceful days with their friends and families.

CERN has just announced new records in collision energies at the LHC. And instead of conducting a neutral risk assessment, the nuclear research centre plans costly upgrades of its Big Bang machine. Facing an LHC upgrade in 2013 for up to CHF 1 Billion and the perspective of a Mega-LHC in 2022: How long will it take until risk researchers are finally integrated in a neutral safety assessment?

There are countless evidences for the necessity of an external and multidisciplinary safety assessment of the LHC. According to a pre-study in risk research, CERN fits less than a fifth of the criteria for a modern risk assessment (see the press release below). It is not acceptable that the clueless member states point at the operator CERN itself, while this regards its self-set security measures as sufficient, in spite of critique from risk researchers, continuous debates and the publication of further papers pointing at concrete dangers and even existential risks (black holes, strangelets) eventually arising from the experiments sooner or later. Presently science has to admit that the risk is disputed and basically unknown.

Continue reading “LHC-Critique Press Info: Instead of a neutral risk assessment of the LHC: New records and plans for costly upgrades at CERN” »

Feb 13, 2012

LHC-Critique PRESS RELEASE (Feb 13 2012): CERN plans Mega-particle collider. COMMUNICATION to CERN: For a neutral and multi-disciplinary risk assessment before any LHC upgrade

Posted by in categories: cosmology, engineering, ethics, existential risks, futurism, nuclear energy, particle physics, philosophy, physics, scientific freedom, space, sustainability, transparency

- CERN’s annual meeting to fix LHC schedules in Chamonix: Increasing energies. No external and multi-disciplinary risk assessment so far. Future plans targeting at costly LHC upgrade in 2013 and Mega-LHC in 2022.

- COMMUNICATION to CERN – For a neutral and multi-disciplinary risk assessment before any LHC upgrade

According to CERN’s Chamonix workshop (Feb. 6–10 2012) and a press release from today: In 2012 the collision energies of the world’s biggest particle collider LHC should be increased from 3.5 to 4 TeV per beam and the luminosity is planned to be increased by a factor of 3. This means much more particle collisions at higher energies.

CERN plans to shut down the LHC in 2013 for about 20 months to do a very costly upgrade (for CHF 1 Billion?) to run the LHC at double the present energies (7 TeV per beam) afterwards.

Continue reading “LHC-Critique PRESS RELEASE (Feb 13 2012): CERN plans Mega-particle collider. COMMUNICATION to CERN: For a neutral and multi-disciplinary risk assessment before any LHC upgrade” »

Feb 12, 2012

CERN’s annual Chamonix-meeting to fix LHC schedules (Feb. 6–10 2012): Increasing energies. No external and multi-disciplinary risk assessment so far. Future plans targeting at Mega-LHC.

Posted by in categories: cosmology, engineering, ethics, events, existential risks, particle physics, physics, scientific freedom, sustainability, transparency

Info on the outcomes of CERN’s annual meeting in Chamonix this week (Feb. 6–10 2012):

In 2012 LHC collision energies should be increased from 3.5 to 4 TeV per beam and the luminosity is planned to be highly increased. This means much more particle collisions at higher energies.

CERN plans to shut down the LHC in 2013 for about 20 months to do a very costly upgrade (CHF 1 Billion?) to run the LHC at 7 TeV per beam afterwards.

Future plans: A High-Luminosity LHC (HL-LHC) is planned, “tentatively scheduled to start operating around 2022” — with a beam energy increased from 7 to 16.5 TeV(!).

Continue reading “CERN’s annual Chamonix-meeting to fix LHC schedules (Feb. 6-10 2012): Increasing energies. No external and multi-disciplinary risk assessment so far. Future plans targeting at Mega-LHC.” »