Menu

Blog

Archive for the ‘engineering’ category: Page 57

Jun 7, 2023

Engineered Liver-On-A-Chip Platform to Mimic Liver Functions and Its Biomedical Applications: A Review

Posted by in categories: biotech/medical, chemistry, computing, engineering

Year 2019 😗😁


Hepatology and drug development for liver diseases require in vitro liver models. Typical models include 2D planar primary hepatocytes, hepatocyte spheroids, hepatocyte organoids, and liver-on-a-chip. Liver-on-a-chip has emerged as the mainstream model for drug development because it recapitulates the liver microenvironment and has good assay robustness such as reproducibility. Liver-on-a-chip with human primary cells can potentially correlate clinical testing. Liver-on-a-chip can not only predict drug hepatotoxicity and drug metabolism, but also connect other artificial organs on the chip for a human-on-a-chip, which can reflect the overall effect of a drug. Engineering an effective liver-on-a-chip device requires knowledge of multiple disciplines including chemistry, fluidic mechanics, cell biology, electrics, and optics.

Jun 6, 2023

Redefining Fluid Dynamics: Ancient Invention Sparks Modern Breakthrough

Posted by in categories: biotech/medical, engineering, law, transportation

A group of scientists has discovered new laws governing the flow of fluids by conducting experiments on an ancient technology: the drinking straw. This newfound understanding has the potential to enhance fluid management in medical and engineering contexts.

“We found that sipping through a straw defies all the previously known laws for the resistance or friction of flow through a pipe or tube,” explains Leif Ristroph, an associate professor at New York University’s Courant Institute of Mathematical Sciences and an author of the study, which appears in the Journal of Fluid Mechanics. “This motivated us to search for a new law that could work for any type of fluid moving at any rate through a pipe of any size.”

The movement of liquids and gases through conduits such as pipes, tubes, and ducts is a common phenomenon in both natural and industrial contexts, including in scenarios like the circulation of blood or the transportation of oil through pipelines.

Jun 3, 2023

Buckle up: A new class of materials is here

Posted by in categories: engineering, nanotechnology

Usually, the two characterizations of a material are mutually exclusive: something is either stiff, or it can absorb vibrations well—but rarely both. However, if we could make materials that are both stiff and good at absorbing vibrations, there would be a whole host of potential applications, from design at the nanoscale to aerospace engineering.

A team of researchers from the University of Amsterdam has now found a way to create that are stiff, but still good at absorbing vibrations—and equally importantly, that can be kept very light-weight.

Continue reading “Buckle up: A new class of materials is here” »

Jun 3, 2023

Dr. Rita Baranwal, Ph.D. — Senior Vice President, Energy Systems, Westinghouse Electric Company

Posted by in categories: business, engineering, government, nuclear energy

Is Senior Vice President of the Energy Systems business unit of Westinghouse Electric Company, which is the nuclear power unit of.
Westinghouse, where her core focus is in leading the team developing and.
deploying their AP300 Small Modular Nuclear Reactor (https://www.westinghousenuclear.com/Portals/0/about-2020/lea
UL22.pdf).

Dr. Baranwal recently served Chief Technology Officer of the organization, where she led the company’s global research and development investments, spearheading their technology strategy to advance the company’s nuclear innovation, and drove next-generation solutions for existing and new markets.

Continue reading “Dr. Rita Baranwal, Ph.D. — Senior Vice President, Energy Systems, Westinghouse Electric Company” »

Jun 1, 2023

Dr. Elica Kyoseva, Ph.D. — Quantum for Bio Program Director — Wellcome Leap

Posted by in categories: computing, engineering, finance, health, information science, quantum physics

Is the Quantum for Bio Program Director, at Wellcome Leap (https://wellcomeleap.org/our-team/elicakyoseva/), a $40M +$10M program focused on identifying, developing, and demonstrating biology and healthcare applications that will benefit from the quantum computers expected to emerge in the next 3–5 years.

Wellcome Leap was established with $300 million in initial funding from the Wellcome Trust, the UK charitable foundation, to accelerate discovery and innovation for the benefit of human health, focusing on build bold, unconventional programs and fund them at scale—specifically programs that target global human health challenges, with the goal of achieving breakthrough scientific and technological solutions.

Continue reading “Dr. Elica Kyoseva, Ph.D. — Quantum for Bio Program Director — Wellcome Leap” »

May 31, 2023

Examining a nanocrystal that shines on and off indefinitely

Posted by in categories: engineering, nanotechnology

In 2021, lanthanide-doped nanoparticles made waves—or rather, an avalanche—when Changwan Lee, then a Ph.D. student in Jim Schuck’s lab at Columbia Engineering, set off an extreme light-producing chain reaction from ultrasmall crystals developed at the Molecular Foundry at Berkeley Lab. Those same crystals are back again with a blink that can now be deliberately and indefinitely controlled.

“We’ve found the first fully photostable, fully photoswitchable nanoparticle—a holy grail of nanoprobe design,” said Schuck, associate professor of mechanical engineering.

This unique material was synthesized in the laboratories of Emory Chan and Bruce Cohen at the Molecular Foundry, Lawrence Berkeley National Laboratory as well as in a national lab in South Korea. The research team also included Yung Doug Suh’s lab at Ulsan National Institute of Science and Technology (UNIST).

May 31, 2023

Quantum Quasiparticle Sandwiches: Serving Up a New Era of Efficient Computing

Posted by in categories: computing, education, engineering, quantum physics

A perovskite-based device that combines aspects of electronics and photonics may open doors to new kinds of computer chips or quantum qubits.

MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

May 30, 2023

Revolutionizing Quantum Circuits: Precision Engineering With Graphene

Posted by in categories: engineering, quantum physics

Scientists from CiQUS, ICN2, University of Cantabria, DIPC and DTU join forces to develop a versatile method for building brick-by-brick carbon nanocircuits with tunable properties.

May 29, 2023

Storing hydrogen in coal may help power clean energy economy

Posted by in categories: economics, energy, engineering, transportation

The quest to develop hydrogen as a clean energy source that could curb our dependence on fossil fuels may lead to an unexpected place—coal. A team of Penn State scientists found that coal may represent a potential way to store hydrogen gas, much like batteries store energy for future use, addressing a major hurdle in developing a clean energy supply chain.

“We found that can be this geological hydrogen battery,” said Shimin Liu, associate professor of energy and mineral engineering at Penn State. “You could inject and store the hydrogen energy and have it there when you need to use it.”

Hydrogen is a clean burning fuel and shows promise for use in the most energy intensive sectors of our economy—transportation, electricity generation and manufacturing. But much work remains to build a and make it an affordable and reliable energy source, the scientists said.

May 27, 2023

Psychedelic substance 5-MeO-DMT induces long-lasting neural plasticity in mice

Posted by in categories: biotech/medical, engineering, neuroscience

The psychedelic substances 5-MeO-DMT causes a long-lasting increase in the number of tiny protrusions called dendritic spines in the brain, according to new research published in Neuropsychopharmacology. The study, which was conducted on mice, sheds light on the behavioral and neural mechanisms of 5-MeO-DMT.

Serotonergic psychedelics (such as psilocybin and LSD) have shown promise as potential therapeutics for mental illnesses like depression and anxiety. Short-acting compounds are particularly interesting because they require less dosing time, which could improve patient access to treatment. In humans, 5-MeO-DMT produces a short-lasting experience due to its rapid breakdown in the body.

“My lab started research on psychiatric drugs like ketamine and psychedelics about 10 years ago. We were motivated by how basic science and clinical research can together powerfully move a drug forward to become medicine. Specifically I believe there is a lot of potential for psychedelics as therapeutics, and that drives our interest in this topic,” said study author Alex Kwan (@kwanalexc), an associate professor in the Meinig School of Biomedical Engineering at Cornell University.

Page 57 of 262First5455565758596061Last