Toggle light / dark theme

We might all have been in a situation where we had to put our trust in our work to hold up and do what it needed to do, but Margaret Hamilton’s work was particularly important — it was responsible for putting Neil Armstrong and Buzz Aldrin on the moon in July 1969.

When warning lights started going off in the middle of the Eagle module’s descent toward the lunar surface, NASA faced a tough decision: continue with the landing or abort.

Margaret offered the world a great deal with her prowess, and I am glad Obama recognized her before her death, thank God she’s still with us today. #GodBlessHer


When Margaret Hamilton was put in charge of writing the software that would fly the Apollo astronauts to the moon, no one had ever done anything like this before, so she invented software engineering to get it done.

Physical systems evolve at a particular speed, which depends on various factors including the system’s so-called topological structure (i.e., spatial properties that are preserved over time despite any physical changes that occur). Existing methods for determining the speed at which physical systems change over time, however, do not account for these structural properties.

Two researchers at Keio University in Japan have recently derived a speed limit for the evolution of physical states that also accounts for the topological structure of a system and of its underlying dynamics. This speed limit, outlined in a paper published in Physical Review Letters, could have numerous valuable applications for the study and development of different , including quantum technologies.

“Figuring out how fast a system state can change is a central topic in classical and , which has attracted the great interest of scientists,” Tan Van Vu and Keiji Saito, the researchers who carried out the study, told Phys.org. “Understanding the mechanism of controlling time is relevant to engineering fast devices such as quantum computers.”

I posted about Japan releasing radioactive water, and thought it was a bad idea, because of this MIT revelation.


Nuclear power continues to expand globally, propelled, in part, by the fact that it produces few greenhouse gas emissions while providing steady power output. But along with that expansion comes an increased need for dealing with the large volumes of water used for cooling these plants, which becomes contaminated with radioactive isotopes that require special long-term disposal.

Now, a method developed at MIT provides a way of substantially reducing the volume of contaminated water that needs to be disposed of, instead concentrating the contaminants and allowing the rest of the water to be recycled through the plant’s cooling system. The proposed system is described in the journal Environmental Science and Technology, in a paper by graduate student Mohammad Alkhadra, professor of chemical engineering Martin Bazant, and three others.

The method makes use of a process called shock electrodialysis, which uses an electric field to generate a deionization shockwave in the water. The shockwave pushes the electrically charged particles, or ions, to one side of a tube filled with charged porous material, so that concentrated stream of contaminants can be separated out from the rest of the water. The group discovered that two radionuclide contaminants — isotopes of cobalt and cesium — can be selectively removed from water that also contains boric acid and lithium. After the water stream is cleansed of its cobalt and cesium contaminants, it can be reused in the reactor.

Quantum materials are materials with unique electronic, magnetic or optical properties, which are underpinned by the behavior of electrons at a quantum mechanical level. Studies have showed that interactions between these materials and strong laser fields can elicit exotic electronic states.

In recent years, many physicists have been trying to elicit and better understand these exotic states, using different material platforms. A class of materials that was found to be particularly promising for studying some of these states are transition metal dichalcogenides.

Monolayer transition metal dichalcogenides are 2D materials that consist in single layers of atoms from a transition metal (e.g., tungsten or molybdenum) and a chalcogen (e.g., sulfur or selenium), which are arranged into a . These materials have been found to offer exciting opportunities for Floquet engineering (a technique to manipulate the properties of materials using lasers) of excitons (quasiparticle electron-hole correlated states).

I still like Helion… but not for a power plant. Instead, this is an interesting route to a fusion drive.

This is also a very good channel. It is worth watching his other fusion videos first.


A short humorous analysis of challenges with the fusion approach of Helion Energy.

00:00 — Introduction.
01:03 — Low reactivity.
02:55 — Neutrons.
05:33 — Bremsstrahlung.
06:17 — Diagnostics.
06:57 — Conclusion.

References.

Gene therapies have the potential to treat neurological disorders like Alzheimer’s and Parkinson’s diseases, but they face a common barrier—the blood-brain barrier. Now, researchers at the University of Wisconsin-Madison have developed a way to move therapies across the brain’s protective membrane to deliver brain-wide therapy with a range of biological medications and treatments.

“There is no cure yet for many devastating disorders,” says Shaoqin “Sarah” Gong, UW-Madison professor of ophthalmology and visual sciences and biomedical engineering and researcher at the Wisconsin Institute for Discovery. “Innovative brain-targeted delivery strategies may change that by enabling noninvasive, safe and efficient delivery of CRISPR genome editors that could, in turn, lead to genome-editing therapies for these diseases.”

CRISPR is a molecular toolkit for editing (for example, to correct mutations that may cause disease), but the toolkit is only useful if it can get through security to the job site. The is a membrane that selectively controls access to the brain, screening out toxins and pathogens that may be present in the bloodstream. Unfortunately, the bars some beneficial treatments, like certain vaccines and gene therapy packages, from reaching their targets because in lumps them in with hostile invaders.

Researchers from the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering at the Technion—Israel Institute of Technology have presented the first experimental observation of Cherenkov radiation confined in two dimensions. The results represent a new record in electron-radiation coupling strength, revealing the quantum properties of the radiation.

Cherenkov is a unique physical phenomenon, which for many years has been used in medical imaging and in particle detection applications, as well as in laser-driven electron accelerators. The breakthrough achieved by the Technion researchers links this phenomenon to future photonic quantum computing applications and free-electron quantum light sources.

The study, which was published in Physical Review X, was headed by Ph.D. students Yuval Adiv and Shai Tsesses from the Technion, together with Hao Hu from the Nanyang Technological University in Singapore (today professor at Nanjing university in China). It was supervised by Prof. Ido Kaminer and Prof. Guy Bartal of the Technion, in collaboration with colleagues from China: Prof. Hongsheng Chen, and Prof. Xiao Lin from Zhejiang University.

Joby makes EVTOL vehicles intended for small trips like Austin to Houston. A year ago they were the first EVTOL company to complete a 150 mile all electric flight. Check out this video to see the engineering innvolved.


PCB boards, CNC machining, Sheet metal fabrication, Injection molding, and 3D printing ➡️ https://www.pcbway.com/

You can now Sponsor my next eVTOL Innovation YouTube video!
Get your product, service, or content in front of an audience of 231,500 viewers per video [Average]
Reserve a Sponsorship ➡️ https://www.evtolinnovation.com/sponsor.

In July of 2021, this aircraft achieved what many thought impossible with today’s battery technology. It completed the longest, all-electric, vertical takeoff and landing flight. The Joby S4 is the result of more than 13 years of engineering and innovation. Joby Aviation’s ambitious goal is to make affordable air travel between places like Houston and Austin, or Los Angeles and San Diego an everyday reality.
However, to be allowed to operate in urban areas, Joby had to develop an aircraft that is quieter than helicopters, as safe as commercial airliners, and cost-effective for mass adoption. More than 250 evtol companies worldwide are working to make Urban Air Mobility a reality, and Joby Aviation is the indisputable leader. In this video, I will explore the three key design elements that make the S4 technically impressive and unique. This is the engineering behind the Joby S4.

• Inside Joby’s Unicorn: Flight Tests and Patents Reveal New Details ➡️ https://evtol.news/news/inside-jobys-unicorn-flight-tests-an…w-details.

Scientists have developed a wireless, battery-free implant capable of monitoring dopamine signals in the brain in real-time in small animal models, an advance that could aid in understanding the role neurochemicals play in neurological disorders.

The , detailed in a study published in ACS Nano, activates or inhibits specific neurons in the using light, a technique known as optogenetic stimulation. It also records dopamine activity in freely behaving subjects without the need for bulky or prohibitive sensing equipment, said John Rogers, Ph.D., the Louis Simpson and Kimberly Querrey Professor of Materials Science and Engineering, Biomedical Engineering and Neurological Surgery, and a co-author of the study.

“This device allows neuroscientists to monitor and modulate in and in a programmable fashion, in mice—a very important class of animal model for neuroscience studies,” Rogers said.