Menu

Blog

Archive for the ‘engineering’ category: Page 80

Aug 24, 2022

Scientists create material capable of ‘thinking’

Posted by in categories: biotech/medical, computing, engineering, neuroscience

The technology is based on integrated circuits, which typically rely on silicon semiconductors in order to process information in a way that is similar to the role played by the brain in the human body.

The research team discovered that integrated circuits capable of performing computational tasks could be achieved using “nearly any material” around us.

“We have created the first example of an engineering material that can simultaneously sense, think and act upon mechanical stress, without requiring additional circuits to process such signals,” said Ryan Harne, an associate professor of mechanical engineering at Penn State.

Aug 23, 2022

Chaos synchronization between linearly coupled chaotic systems

Posted by in categories: biotech/medical, engineering, neuroscience

Chaos, as a very interesting nonlinear phenomenon, has been intensively studied in the last three decades [10], [13]. It is found to be useful or has great potential in many disciplines such as in collapse prevention of power systems, biomedical engineering applications to the human brain and heart, thorough liquid mixing with low power consumption, secret communication technology, to name just a few [10], [13], [24].

Over the last decade, many new types of synchronization have appeared: chaotic synchronization [3], [4], lag synchronization [9], adaptive synchronization [2], phase synchronization [6], and generalized synchronization [9], to mention only a few. Since the discovery of chaos synchronization [3], there has been tremendous interest in studying the synchronization of chaotic systems [10]. Recently, synchronization of coupled chaotic systems has received considerable attention [1], [2], [5], [7]. Especially, a typical study of synchronization is the coupled identical chaotic systems [1], [6].

In 1963, Lorenz found the first classical chaotic attractor [12]. In 1999, Chen found another similar but topologically not equivalent chaotic attractor [11], [21], [22], as the dual of the Lorenz system, in a sense defined by Vanĕc̆ek and C̆elikovský [23]: The Lorenz system satisfies the condition a12 a21 0 while Chen system satisfies a12 a21 0. Very recently, Lü et al. produced a new chaotic system [14], [15], which satisfies the condition a12 a21 =0, thereby bridging the gap between the Lorenz and Chen attractors [15], [16], [17].

Aug 21, 2022

From bridges to DNA: civil engineering across disciplines

Posted by in categories: biotech/medical, engineering

Johannes Kalliauer, a postdoc at the MIT Concrete Sustainability Hub, studies how structures like DNA and bridges relate with Newtonian mechanics.

Aug 19, 2022

NUS researchers invent self-charging, ultra-thin device that generates electricity from air moisture

Posted by in categories: engineering, health, sustainability, wearables

This new invention is highly scalable since its raw materials are commercially available and easy to access.

A team of researchers from the National University of Singapore’s (NUS) College of Design and Engineering (CDE) has developed a self-charging electricity generation (MEG) device that generates electricity from air moisture, according to a press release by the institution.


Imagine being able to generate electricity by harnessing moisture in the air around you with just everyday items like sea salt and a piece of fabric, or even powering everyday electronics with a non-toxic battery that is as thin as paper. A team of researchers from the National University of Singapore’s (NUS) College of Design and Engineering (CDE) has developed a new moisture-driven electricity generation (MEG) device made of a thin layer of fabric — about 0.3 millimetres (mm) in thickness — sea salt, carbon ink, and a special water-absorbing gel.

Continue reading “NUS researchers invent self-charging, ultra-thin device that generates electricity from air moisture” »

Aug 18, 2022

Self-charging, ultra-thin device that generates electricity from air moisture

Posted by in categories: engineering, health, sustainability, wearables

Imagine being able to generate electricity by harnessing moisture in the air around you with just everyday items like sea salt and a piece of fabric, or even powering everyday electronics with a non-toxic battery that is as thin as paper. A team of researchers from the National University of Singapore’s (NUS) College of Design and Engineering (CDE) has developed a new moisture-driven electricity generation (MEG) device made of a thin layer of fabric—about 0.3 millimeters (mm) in thickness—sea salt, carbon ink, and a special water-absorbing gel.

The concept of MEG devices is built upon the ability of different materials to generate electricity from the interaction with moisture in the air. This area has been receiving growing interest due to its potential for a wide range of real-world applications, including self-powered devices such as wearable electronics like health monitors, electronic skin sensors, and information storage devices.

Continue reading “Self-charging, ultra-thin device that generates electricity from air moisture” »

Aug 17, 2022

Scientists Want to Block Out the Sun. Should We? Is it Even Possible?

Posted by in categories: biotech/medical, engineering

Iron could massively boost ocean algae populations.

Scientists suggest we could fertilize the world’s oceans with iron to fight climate change. Iron would lead to phytoplankton blooms, which would help to pull carbon dioxide out of the atmosphere.

Continue reading “Scientists Want to Block Out the Sun. Should We? Is it Even Possible?” »

Aug 16, 2022

Australian engineers produce concrete from tyre, rubber, and rocks

Posted by in categories: engineering, particle physics, sustainability, transportation

The new concrete made of tyres will be eco-friendly and cheaper. Engineers from RMIT succeeded in producing concrete from materials such as gravel, tyre, rubber, and crushed rock. It is believed that this innovation will be cheaper and eco-friendly. The team is now looking into reinforcing the concrete to see how it can work in structural elements. A group of researchers from the Royal Melbourne Institute of Technology (RMIT), has succeeded in replacing the classic method of making concrete, which is made of gravel and crushed rock, with rubber from discarded tyres that are suitable for building codes.

According to the press release that has been published by the university, new greener and lighter concrete also promises to reduce manufacturing and transportation costs significantly. Small amounts of rubber particles from tyres are already used to replace these concrete aggregates. However, the previous process of replacing all concrete with aggregates had not been successful.

The study published in the Resources, Conservation & Recycling journal showed the tyres’ manufacturing process.

Continue reading “Australian engineers produce concrete from tyre, rubber, and rocks” »

Aug 16, 2022

US Regulators to Certify First Small Modular Nuclear Reactor Design

Posted by in categories: climatology, engineering, nuclear energy, sustainability

View insights.


Since 2016, engineering firm NuScale has been working toward getting approval for a first-of-its-kind nuclear reactor, and late last week, the Nuclear Regulatory Commission (NRC) gave it the green light. The company’s pint-sized nuclear reactor has numerous safety benefits over larger reactors, and the small size makes it possible to build them at a centralized facility before shipping them to their final destination.

Nuclear power seems to flip between savior and boogeyman every few years. As climate change escalates due to the use of fossil fuels, nuclear is seen as a way to reduce carbon emissions while maintaining high electricity generation. However, all it takes is one accident like Fukushima or a reminder that Chernobyl is still incredibly dangerous decades later to make people second-guess the construction of new fission generators.

Continue reading “US Regulators to Certify First Small Modular Nuclear Reactor Design” »

Aug 16, 2022

Study finds that sound plus electrical body stimulation has potential to treat chronic pain

Posted by in categories: biotech/medical, engineering, neuroscience

A University of Minnesota Twin Cities-led team has found that electrical stimulation of the body combined with sound activates the brain’s somatosensory or “tactile” cortex, increasing the potential for using the technique to treat chronic pain and other sensory disorders. The researchers tested the non-invasive technique on animals and are planning clinical trials on humans in the near future.

The paper is published in the Journal of Neural Engineering, a highly regarded, peer-reviewed scientific journal for the interdisciplinary field of neural engineering.

During the experiments, the researchers played broadband sound while electrically stimulating different parts of the body in guinea pigs. They found that the combination of the two activated neurons in the brain’s somatosensory cortex, which is responsible for touch and pain sensations throughout the body.

Aug 15, 2022

Watch out Tesla: 2 German companies are teaming up to develop wireless EV charging

Posted by in categories: engineering, sustainability, transportation

The companies aim to achieve standardization in inductive charging systems.

Siemens and MAHLE have announced that the two companies signed a letter of intent.

They are teaming up to develop infrastructure and automotive engineering and to provide wireless charging to electric vehicles.

Continue reading “Watch out Tesla: 2 German companies are teaming up to develop wireless EV charging” »

Page 80 of 257First7778798081828384Last