Menu

Blog

Archive for the ‘evolution’ category: Page 76

Jun 13, 2022

Tracing the remnants of Andromeda’s violent history

Posted by in categories: chemistry, evolution, space

A detailed analysis of the composition and motion of more than 500 stars has revealed conclusive evidence of an ancient collision between Andromeda and a neighboring galaxy. The findings, which improve our understanding of the events that shape galaxy evolution, were presented by Carnegie’s Ivanna Escala Monday at the meeting of the American Astronomical Society.

Galaxies grow by accreting material from nearby objects—other galaxies and dense clumps of stars called —often in the aftermath of a catastrophic crash. And these events leave behind relics in the form of stellar associations that astronomers call tidal features. This can include elongated streams or arcing shells moving around the surviving galaxy. Studying these phenomena can help us understand a galaxy’s history and the forces that shaped its appearance and makeup.

“The remnants of each crash can be identified by studying the movement of the stars and their chemical compositions. Together this information serves as a kind of fingerprint that identifies stars that joined a galaxy in a collision,” Escala explained.

Jun 11, 2022

Contrasting the fuzzball and wormhole paradigms for black holes

Posted by in categories: cosmology, evolution, quantum physics

Circa 2021 Evidence of string theory by black holes as fuzzballs.


Abstract: We examine an interesting set of recent proposals describing a ‘wormhole paradigm’ for black holes. These proposals require that in some effective variables, semiclassical low-energy dynamics emerges at the horizon. We prove the ‘effective small corrections theorem’ to show that such an effective horizon behavior is not compatible with the requirement that the black hole radiate like a piece of coal as seen from outside. This theorem thus concretizes the fact that the proposals within the wormhole paradigm require some nonlocality linking the hole and its distant radiation. We try to illustrate various proposals for nonlocality by making simple bit models to encode the nonlocal effects. In each case, we find either nonunitarity of evolution in the black hole interior or a nonlocal Hamiltonian interaction between the hole and infinity; such an interaction is not present for burning coal. We examine recent arguments about the Page curve and observe that the quantity that is argued to follow the Page curve of a normal body is not the entanglement entropy but a different quantity. It has been suggested that this replacement of the quantity to be computed arises from the possibility of topology change in gravity which can generate replica wormholes. We examine the role of topology change in quantum gravity but do not find any source of connections between different replica copies in the path integral for the Rényi entropy. We also contrast the wormhole paradigm with the fuzzball paradigm, where the fuzzball does radiate like a piece of coal. Just as in the case of a piece of coal, the fuzzball does not have low-energy semiclassical dynamics at its surface at energies $E\sim T$ (effective dynamics at energies $E\gg T$ is possible under the conjecture of fuzzball complementarity, but these $E\gg T$ modes have no relevance to the Page curve or the information paradox).

From: Marcel Hughes [view email]

Jun 5, 2022

Scientists announce a breakthrough in determining life’s origin on Earth—and maybe Mars

Posted by in categories: biotech/medical, evolution, genetics

Scientists at the Foundation for Applied Molecular Evolution announced today that ribonucleic acid (RNA), an analog of DNA that was likely the first genetic material for life, spontaneously forms on basalt lava glass. Such glass was abundant on Earth 4.35 billion years ago. Similar basalts of this antiquity survive on Mars today.


More information:

Craig A. Jerome et al, Catalytic Synthesis of Polyribonucleic Acid on Prebiotic Rock Glasses, Astrobiology (2022). DOI: 10.1089/ast.2022.

Continue reading “Scientists announce a breakthrough in determining life’s origin on Earth—and maybe Mars” »

Jun 2, 2022

How electric fish were able to evolve electric organs

Posted by in categories: biotech/medical, evolution, genetics, sex

Electric organs help electric fish, such as the electric eel, do all sorts of amazing things: They send and receive signals that are akin to bird songs, helping them to recognize other electric fish by species, sex and even individual. A new study in Science Advances explains how small genetic changes enabled electric fish to evolve electric organs. The finding might also help scientists pinpoint the genetic mutations behind some human diseases.

Evolution took advantage of a quirk of genetics to develop electric organs. All fish have duplicate versions of the same gene that produces tiny muscle motors, called . To evolve electric organs, electric fish turned off one duplicate of the channel gene in muscles and turned it on in other cells. The tiny motors that typically make muscles contract were repurposed to generate electric signals, and voila! A new organ with some astonishing capabilities was born.

“This is exciting because we can see how a small change in the gene can completely change where it’s expressed,” said Harold Zakon, professor of neuroscience and integrative biology at The University of Texas at Austin and corresponding author of the study.

May 29, 2022

I tried ordering pizza with my mind on the new Domino’s ‘Stranger Things’ app. Despite some glitches, it worked and was really fun

Posted by in categories: evolution, genetics

😳!!!


New research suggests that Darwinian evolution could be happening up to four times faster than previously thought, based on an analysis of genetic variation.

Continue reading “I tried ordering pizza with my mind on the new Domino’s ‘Stranger Things’ app. Despite some glitches, it worked and was really fun” »

May 27, 2022

What if quantum physics could eradicate illness? | Jim Al-Khalili for Big Think

Posted by in categories: biological, evolution, genetics, information science, particle physics, quantum physics

Can quantum science supercharge genetics? | Jim Al-Khalili for Big Think.


This interview is an episode from The Well, our new publication about ideas that inspire a life well-lived, created with the John Templeton Foundation.

Continue reading “What if quantum physics could eradicate illness? | Jim Al-Khalili for Big Think” »

May 26, 2022

Giant Magnetic Waves Have Been Discovered Oscillating Around Earth’s Core

Posted by in category: evolution

Earth’s interior is a far from quiet place. Deep below our surface activities, the planet rumbles with activity, from plate tectonics to convection currents that circulate through the hot magmatic fluids far underneath the crust.

Now scientists studying satellite data of Earth have identified something inside Earth we’ve never seen before: a new type of magnetic wave that sweeps around the surface of our planet’s core, every seven years.

Continue reading “Giant Magnetic Waves Have Been Discovered Oscillating Around Earth’s Core” »

May 24, 2022

Mesodinium Chamaeleon Is A Unique Life Form That is Half Plant Half Animal

Posted by in categories: biological, evolution

Circa 2012


In nature, you’ll find animals that undergo vast transformations, becoming almost unrecognizable in their new forms. Examples like caterpillars becoming butterflies and tadpoles becoming frogs almost look like distinct animals in the different stages of their evolution.

While this might sound amazing, all stages of these animals still belong to the same biological taxonomic rank, Animalia. This means that caterpillars don’t become plants, in their new shapes, they remain animals. That’s not what Mesodinium chamaeleon does. This single-celled organism is a unique mix of animal and plant life.

Continue reading “Mesodinium Chamaeleon Is A Unique Life Form That is Half Plant Half Animal” »

May 24, 2022

NASA’s Psyche Spacecraft Arrives at Kennedy Space Center

Posted by in categories: alien life, chemistry, evolution

For the past fifty years of space exploration, mass spectrometry has provided unique chemical and physical insights on the characteristics of other planetary bodies in the Solar System. A variety of mass spectrometer types, including magnetic sector, quadrupole, time-of-flight, and ion trap, have and will continue to deepen our understanding of the formation and evolution of exploration targets like the surfaces and atmospheres of planets and their moons. An important impetus for the continuing exploration of Mars, Europa, Enceladus, Titan, and Venus involves assessing the habitability of solar system bodies and, ultimately, the search for life—a monumental effort that can be advanced by mass spectrometry. Modern flight-capable mass spectrometers, in combination with various sample processing, separation, and ionization techniques enable sensitive detection of chemical biosignatures.

May 24, 2022

Planetary Mass Spectrometry for Agnostic Life Detection in the Solar System

Posted by in categories: alien life, chemistry, evolution

Circa 2021


For the past fifty years of space exploration, mass spectrometry has provided unique chemical and physical insights on the characteristics of other planetary bodies in the Solar System. A variety of mass spectrometer types, including magnetic sector, quadrupole, time-of-flight, and ion trap, have and will continue to deepen our understanding of the formation and evolution of exploration targets like the surfaces and atmospheres of planets and their moons. An important impetus for the continuing exploration of Mars, Europa, Enceladus, Titan, and Venus involves assessing the habitability of solar system bodies and, ultimately, the search for life—a monumental effort that can be advanced by mass spectrometry. Modern flight-capable mass spectrometers, in combination with various sample processing, separation, and ionization techniques enable sensitive detection of chemical biosignatures. While our canonical knowledge of biosignatures is rooted in Terran-based examples, agnostic approaches in astrobiology can cast a wider net, to search for signs of life that may not be based on Terran-like biochemistry. Here, we delve into the search for extraterrestrial chemical and morphological biosignatures and examine several possible approaches to agnostic life detection using mass spectrometry. We discuss how future missions can help ensure that our search strategies are inclusive of unfamiliar life forms.

Biosignatures are the tantalizing chemical and physical imprints associated with life, and the possibility that life exists elsewhere beyond Earth drives us to search for these biosignatures on other planets and moons. The enterprise of space exploration, galvanized by the question of “Are we alone in the Universe?”, demands a stronger understanding of the diversity of biosignatures that life could express, thereby driving payload instruments on board astrobiology missions to offer broader and more advanced detection capabilities. In tandem with cutting-edge instrument platforms, research in data processing and data analysis on Earth-based (Terran) astrobiology analogs and on extraterrestrial materials also serves to increase the breadth of interpretations possible with mission data.

Page 76 of 149First7374757677787980Last