Menu

Blog

Archive for the ‘genetics’ category: Page 113

Jul 29, 2023

The First Step to Life: Hitting Reset To Start a New Embryo

Posted by in categories: biotech/medical, genetics

Recent collaborative research conducted by scientists in the United States and China unveils the mechanism through which a fertilized egg cell, also known as a zygote, triggers a ‘reset’, enabling the newly formed embryo can develop according to its own genetic program. The study was recently published in the journal Nature.

It has been known for some time that the genome of a newly fertilized egg cell is inactive and has to be woken up, said Richard Schultz, research professor at the University of California, Davis, School of Veterinary Medicine and a corresponding author on the paper. This step is called zygote genome activation.

“For the embryo to develop, the oocyte/egg has to lose its identity and does so by making new stuff,” Schultz said. “We now know the first steps in how this transition occurs.”

Jul 29, 2023

Your genetic code has lots of ‘words’ for the same thing — information theory may help explain the redundancies

Posted by in category: genetics

Many of the amino acids that make up proteins are encoded by genetic material in more than one way. An information theorist explains how principles of nature may account for this variance.

Jul 29, 2023

Unearthing Our Past, Predicting Our Future: Scientists Discover the Genes That Shape Our Bones

Posted by in categories: biotech/medical, genetics, health, robotics/AI

This groundbreaking study, which was published as the cover article in the journal Science, not only sheds light on our evolutionary history but also paves the way for a future where physicians could more accurately assess a patient’s likelihood of suffering from ailments like back pain or arthritis later in life.

“Our research is a powerful demonstration of the impact of AI in medicine, particularly when it comes to analyzing and quantifying imaging data, as well as integrating this information with health records and genetics rapidly and at large scale,” said Vagheesh Narasimhan, an assistant professor of integrative biology as well as statistics and data science, who led the multidisciplinary team of researchers, to provide the genetic map of skeletal proportions.

Jul 29, 2023

‘Virgin birth’ genetically engineered into female animals for the first time

Posted by in categories: biotech/medical, genetics

Scientists alter the genomes of female fruit flies, allowing them to reproduce without any contribution from a male.

Jul 29, 2023

This company plans to transplant gene-edited pig hearts into babies next year

Posted by in categories: biotech/medical, genetics

EGenesis has started transplanting gene-edited pigs’ hearts into infant baboons—and humans may be next.

Jul 28, 2023

Researchers find an epigenetic key that unlocks common deadly cancers

Posted by in categories: biotech/medical, genetics

Early on, every stem cell faces a fateful choice. During skin development, for instance, the embryonic epidermis begins as a single layer of epidermal progenitor cells. Their choice is to become a mature epidermal cell or switch to becoming a hair follicle cell. This so-called fate switch is governed by the transcription factor SOX9. If the progenitor cell expresses SOX9, hair follicle cells develop. If it doesn’t, epidermal cells do.

But there is a dark side to SOX9, as it’s implicated in many of the deadliest cancers worldwide, including lung, skin, head and neck, and bone cancer. In skin, some aberrant adult epidermal stem cells later turn on SOX9 despite their chosen path—and never turn it off, kickstarting a process that ultimately activates cancer .

Scientists have never fully understood how this doomed outcome ensues at a molecular level. But now Rockefeller researchers have revealed the mechanisms behind this malignant turn of events. SOX9, it turns out, belongs to a special class of proteins that govern the transfer of genetic information from DNA to mRNA. That means it has the ability to pry open sealed pockets of genetic material, bind to previously silent genes within, and activate them. They published their results in Nature Cell Biology.

Jul 28, 2023

Fragile X Syndrome: New Hopes of Treatment For Genetic Disorder

Posted by in categories: biological, chemistry, genetics, neuroscience

Fragile X syndrome is a genetic disorder caused by a mutation in a gene that lies at the tip of the X chromosome. It is linked to autism spectrum disorders.

People with fragile X experience a range of symptoms that include cognitive impairment, developmental and speech delays and hyperactivity. They may also have some physical features such as large ears and foreheads, flabby muscles and poor coordination.

Continue reading “Fragile X Syndrome: New Hopes of Treatment For Genetic Disorder” »

Jul 28, 2023

Genetically engineered trees stoke climate hope — and environmental fears

Posted by in categories: bioengineering, climatology, genetics, sustainability

“O poplar tree, O poplar tree, how carbon-dense are thy branches …”

Trees are a major tool in our fight against climate change by sucking up carbon dioxide, but one company is taking them a step further: genetically engineering trees to sequester even more carbon. U.S. climate technology startup Living Carbon is developing genetically engineered seedlings of a hybrid poplar that it says can accumulate up to 53% more biomass than control plants and thereby absorb 27% more carbon.

Plants use sunlight to turn water and carbon dioxide into oxygen and sugar, a process known as photosynthesis. Living Carbon says its trees, a hybrid of the common aspen (Populus tremula) and white poplar (P. alba), can do it better with genetic changes to boost its photosynthetic performance.

Jul 27, 2023

Biotechnology giant: Does China now lead the world in human and agricultural genetic engineering?

Posted by in categories: bioengineering, biotech/medical, food, genetics

For many people, when they hear China and genetic engineering in the same sentence, it is often synonymous with scandal.

Jul 27, 2023

Boning Up on the Unique Genetics of the Human Skeletal System

Posted by in categories: biotech/medical, computing, genetics, neuroscience

Humans have a distinctive skeleton, and are the only bipedal great apes (the great ape species are bonobos, chimpanzees, gorillas, orangutans, and humans). While the evolution of the human skeleton enabled us to walk upright, it also led to the rise of musculoskeletal disease. It’s thought that cognitive development began to accelerate in humans once we started to move around, adapt to new environments, and make use of tools. Researchers have now used advanced computational tools and a trove of human genetic data in the UK Biobank to outline the genetic changes that occurred as primates started to walk upright for the first time.

These findings, which were reported in Science, have suggested that natural selection had a strong influence on the genetic changes that altered our anatomy, and gave early humans an evolutionary leg up.