Menu

Blog

Archive for the ‘genetics’ category: Page 188

Sep 16, 2022

CRISPR Gene Editing: State of the Tech and What’s Next featuring Dr. Jennifer Doudna

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

Chardan hosted its 4th Annual Chardan Genetic Medicines Conference in October 2020, featuring over 80 public and private companies representing in vivo gene therapy, ex vivo gene therapy, gene editing, RNA medicines, and other subsegments of the genetic medicines space. Among our various panels with preeminent thought leaders, we spoke with newly-minted Nobel laureate, President of the Innovative Genomics Institute, and Professor of Molecular and Cell Biology and Chemistry at UC Berkeley, Jennifer Doudna.

PhD about open questions and areas of innovation in the CRISPR gene editing space.

Sep 16, 2022

Scientists Swap Out Bad Memories For Good Ones In Mice

Posted by in category: genetics

Circa 2014 face_with_colon_three


mice

Continue reading “Scientists Swap Out Bad Memories For Good Ones In Mice” »

Sep 16, 2022

2 Minutes to Midlife: The Fantastic Unspecified Future of Epigenetic Clocks

Posted by in categories: biotech/medical, genetics, life extension

With billions of dollars flooding into longevity, what role will epigenetic clocks play in measuring and intervening in aging?

When Horvath first described epigenetic clocks, scientists began to speculate that altering them could reverse aging. After all, if certain patterns of DNA methylation at certain sites in cells in certain tissues of your body are hallmarks of aging, could shifting them somehow reverse aging?

Sep 16, 2022

Genetically modified immune cells put 5 people’s lupus in remission

Posted by in categories: biotech/medical, genetics

More than six months after CAR-T cell treatment, five patients are in remission and have functional immune systems.

Sep 16, 2022

Dr. Greg Lieberman, Ph.D. — Neuroscientist — Optimizing Human-System Performance, Army Research Lab

Posted by in categories: biotech/medical, genetics, military, neuroscience, robotics/AI

Optimizing Human-System Performance — Dr. Greg Lieberman, Ph.D., Neuroscientist / Lead, U.S. Army Combat Capabilities Development Command Army Research Laboratory, U.S. Army Futures Command


Dr. Greg Lieberman, Ph.D. (https://www.arl.army.mil/arl25/meet-arl.php?gregory_lieberman) is a Neuroscientist, and Lead, Optimizing Human-System Performance, at the U.S. Army Combat Capabilities Development Command, Army Research Laboratory (DEVCOM ARL).

Continue reading “Dr. Greg Lieberman, Ph.D. — Neuroscientist — Optimizing Human-System Performance, Army Research Lab” »

Sep 15, 2022

Normally Taking a Million Years: Scientists Successfully Fuse Chromosomes in Mammals

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

In nature, evolutionary chromosomal changes may take a million years, but scientists have recently reported a novel technique for programmable chromosome fusion that has successfully created mice with genetic changes that occur on a million-year evolutionary scale in the laboratory. The findings might shed light on how chromosomal rearrangements – the neat bundles of structured genes provided in equal numbers by each parent, which align and trade or mix characteristics to produce offspring – impact evolution.

In a study published in the journal Science, the researchers show that chromosome level engineering is possible in mammals. They successfully created a laboratory house mouse with a novel and sustainable karyotype, offering crucial insight into how chromosome rearrangements may influence evolution.

“The laboratory house mouse has maintained a standard 40-chromosome karyotype — or the full picture of an organism’s chromosomes — after more than 100 years of artificial breeding,” said co-first author Li Zhikun, researcher in the Chinese Academy of Sciences (CAS) Institute of Zoology and the State Key Laboratory of Stem Cell and Reproductive Biology. “Over longer time scales, however, karyotype changes caused by chromosome rearrangements are common. Rodents have 3.2 to 3.5 rearrangements per million years, whereas primates have 1.6.”

Sep 15, 2022

Pretzel Therapeutics Launches with $72M to Advance Mitochondrial Therapies

Posted by in categories: biotech/medical, genetics, life extension

Biotech start-up Pretzel Therapeutics launched Monday with $72.5 million in Series A financing to develop novel, mitochondria-based therapies for rare genetic disorders and diseases of aging.

Pretzel plans to target mitochondrial diseases, a highly heterogenous group of conditions caused by DNA mutations in the mitochondria or the nucleus. These disorders are very rare, afflicting around one in 5,000 people.

Pretzel CEO Jay Parrish told BioSpace the fundingshould enable us to get close to the clinic if not into the clinic with one or more programs.”

Sep 14, 2022

Hack your DNA with CRISPR — VPRO documentary

Posted by in categories: biotech/medical, cybercrime/malcode, education, genetics

You won’t be able to blame it on your genetics anymore: with CRISPR, it’s so easy to hacn into your DNA. CRISPR technology is our future, and experiments with DNA hacking are booming. CRISPR biotechnology is not science fiction anymore, it is our very near future. Would you hack and reprogram your own DNA with CRISPR? Breaking the code of life, hacking DNA at home.

Welcome to the world of a new nature. We can now literally cut and paste DNA with the new CRISPR technology. There is a revolutionary development going on that will have major consequences for humans, plants and animals. The new biotechnology is here.

Continue reading “Hack your DNA with CRISPR — VPRO documentary” »

Sep 13, 2022

Gene-edited tomato can fight cancer and heart disease

Posted by in categories: biotech/medical, genetics

U.S. regulators have approved a new purple tomato, genetically engineered to be packed with antioxidants and anthocyanins. The fruit will go on sale in 2023.

Sep 13, 2022

Researchers find DNA mutation that led to change in function of gene in humans that sparked larger neocortex

Posted by in categories: biotech/medical, genetics, neuroscience

(Medical Xpress)—A team of researchers at the Max Planck Institute has found what they believe is the DNA mutation that led to a change in function of a gene in humans that sparked the growth of a larger neocortex. In their paper published in the journal Science Advances, the team describes how they engineered a gene found only in humans, Denisovans and Neanderthals to look like a precursor to reveal its neuroproliferative effect.

A year ago, another team of researchers found the that most in the field believe was a major factor in allowing the human brain to grow bigger, allowing for more complex processing. In this new effort, the researchers have found what they believe was the DNA change that arose in that gene.

To pinpoint that change, the researchers engineered the unique ARHGAP11B gene to make it more similar to the ARHGAP11A gene, which researchers believe was a predecessor gene—they swapped a single nucleotide (out of 55 possibilities) for another and in so doing, found the ARHGAP11B gene lost its neuroproliferative abilities. This, the team claims, shows that it was a single mutation that allowed humans to grow bigger brains. Such a mutation, they note, was not likely due to natural selection, but was more likely a simple mistake that occurred as a brain cell was splitting. Because it conferred an advantage (the ability to grow higher than normal amounts of brain cells) the mutation was retained through subsequent generations. They also point out that such a mutation would have resulted specifically in a larger neocortex—a portion of the cortex that has been associated with hearing and sight.