Menu

Blog

Archive for the ‘genetics’ category: Page 197

Apr 25, 2022

A pan-tissue DNA-methylation epigenetic clock based on deep learning

Posted by in categories: biotech/medical, genetics, robotics/AI

Next, we aimed to determine whether the model type, i.e., a linear regression vs. a neural network, would significantly impact the performance. We, therefore, compared the aforementioned linear models with the neural network AltumAge using the same set of features. AltumAge outperformed the respective linear model with Horvath’s 353 CpG sites (MAE = 2.425 vs. 3.011, MSE = 32.732 vs. 46.867) and ElasticNet-selected 903 CpG sites (MAE = 2.302 vs. 2.621, MSE = 30.455 vs. 39.198). This result shows that AltumAge outperforms linear models given the same training data and set of features.

Lastly, to compare the effect of the different sets of CpG sites, we trained AltumAge with all 20,318 CpG sites available and compared the results from the smaller sets of CpG sites obtained above. There is a gradual improvement in performance for AltumAge by expanding the feature set from Horvath’s 353 sites (MAE = 2.425, MSE = 32.732) to 903 ElasticNet-selected CpG sites (MAE = 2.302, MSE = 30.455) to all 20,318 CpG sites (MAE = 2.153, MSE = 29.486). This result suggests that the expanded feature set helps improve the performance, likely because relevant information in the epigenome is not entirely captured by the CpG sites selected by an ElasticNet model.

Overall, these results indicate that even though more data samples lower the prediction error, AltumAge’s performance improvement is greater than the increased data effect. Indeed, the lower error of AltumAge when compared to the ElaticNet is robust to other data splits (Alpaydin’s Combined 5x2cv F test p-value = 9.71e−5).

Apr 25, 2022

Gene-edited wheat resists dreaded fungus without pesticides

Posted by in categories: biotech/medical, genetics

New strain survives powdery mildew, a costly disease, without side effects.

Apr 24, 2022

Synthetic antibody–immune cell complex dramatically shrinks blood tumors

Posted by in categories: biotech/medical, genetics

NEW ORLEANS— Donated immune cells mixed with a molecule that helps them home in on tumor cells have dramatically shrunk tumors in most of the 22 people with blood cancer who received experimental infusions. The results, reported yesterday at the annual meeting of the American Association for Cancer Research (AACR), are a new twist on cell therapies that harness a patient’s own immune cells to treat cancer. The new treatment is simpler to make than other cell therapies for advanced lymphoma, or cancer of the lymph system, the study’s leaders say.

“It’s an interesting idea,” says hematologist and oncologist Jeffrey Miller of the University of Minnesota, Twin Cities, who was a panelist at the plenary session where the work was presented.

CAR-T cells, immune cells genetically modified to carry a surface protein that helps them home in on cancer cells, are the best known cancer cell therapy. Although approved for some types of leukemia and lymphoma, CAR-T cells can cause serious side effects and must be custom-made from a person’s own T cells.

Apr 24, 2022

Researchers have discovered a de-ageing technique that made skin cells 30 years younger

Posted by in categories: biotech/medical, genetics, life extension

This is not the first successful research on de-ageing cells. Earlier, Shinya Yamanaka, a Nobel prize-winning stem cell researcher, genetically reprogrammed the mouse skin cells and turned them into induced pluripotent stem cells, or iPSCs, back in 2006. These cells type had the potential to form any cell type in the body. Yamanaka’s method took 50 days and completely reprograms cells to the biological age of an embryo. Gill’s method only took 13 days.

In a statement, Gill said, “Our results represent a big step forward in our understanding of cell reprogramming. We have proved that cells can be rejuvenated without losing their function and that rejuvenation looks to restore some function to old cells.”

Apr 24, 2022

Evidence suggests cancer is not as purely genetic as once thought

Posted by in categories: biotech/medical, genetics

New evidence shows that cancer is not as heritable or purely genetic as once thought, and taking a multi-omics approach may lead to a better understanding of how to prevent and treat it.

Apr 24, 2022

Here’s What the World Will Look Like in 2030 … Right?

Posted by in categories: genetics, space

These six visions from humans today span space colonies, a genetic panopticon, and straight-up apocalypse.

Apr 22, 2022

A new genome reference index could save the gene diversity of humans

Posted by in categories: biotech/medical, genetics

Apr 22, 2022

Largest study of whole genome sequencing data reveals ‘treasure trove’ of clues about causes of cancer

Posted by in categories: biotech/medical, genetics

DNA analysis of thousands of tumors from NHS patients has found a ‘treasure trove’ of clues about the causes of cancer, with genetic mutations providing a personal history of the damage and repair processes each patient has been through.

In the biggest study of its kind, a team of scientists led by Professor Serena Nik-Zainal from Cambridge University Hospitals (CUH) and University of Cambridge, analyzed the complete genetic make-up or whole-genome sequences of more than 12,000 NHS cancer patients.

Because of the vast amount of data provided by , the researchers were able to detect patterns in the DNA of cancer—or ‘mutational signatures’—that provide clues about whether a patient has had a past exposure to environmental causes of cancer such as smoking or UV light, or has internal, cellular malfunctions.

Apr 22, 2022

Lab grown, self-sustainable muscle cells repair injury and disease, mouse study shows

Posted by in categories: biotech/medical, genetics

In proof-of-concept experiments, Johns Hopkins Medicine scientists say they have successfully cultivated human muscle stem cells capable of renewing themselves and repairing muscle tissue damage in mice, potentially advancing efforts to treat muscle injuries and muscle-wasting disorders in people.

A report on the experiments was published April 7 in Cell Stem Cell.

To make the self-renewing stem cells, the scientists began with laboratory-grown human skin cells that were genetically reprogrammed to a more primitive state in which the cells have the potential to become almost any type of cell in the body. At this point, the cells are known as induced pluripotent stem (IPS) cells, and they are mixed with a solution of standard cell growth factors and nutrients that nudge them to differentiate into specific cell types.

Apr 22, 2022

Synthetic DNA Manufacturer has the “Write Stuff”

Posted by in categories: biotech/medical, chemistry, economics, genetics

Circa 2021 Synthetic silicon dna storage.


In research, the demand for DNA strands often outpaces supply. To help supply keep up, researchers may set aside traditional molecular cloning techniques and embrace polymerase chain reaction select PCR)-based techniques. Alternatively, researchers may perform gene synthesis, or the de novo chemical synthesis of DNA. Besides accelerating the creation of genetic sequences, gene synthesis avoids the need for template strands and simplifies procedures such as codon optimization and the fabrication of mutant sequences.

Although gene synthesis can be performed in house, many laboratories prefer to focus on their core competencies and outsource their gene synthesis projects to service providers, especially if sequences of over 1,000 base pairs are desired. Outsourcing also allows laboratories to take advantage of service providers’ economies of scale and quick turnaround times. Finally, service providers offer ease of use. Clients can go online, upload the desired sequences, choose the vector, get the price, and place the order. The entire process takes only a few minutes, and the genes can be delivered a few days later.

Continue reading “Synthetic DNA Manufacturer has the ‘Write Stuff’” »