Menu

Blog

Archive for the ‘genetics’ category: Page 227

Jan 11, 2022

First Reversal of Type 1 Diabetes Using Precision Medicine

Posted by in categories: biotech/medical, genetics, health

Houston, TX — Oct 8, 2020 - In a letter published today in the New England Journal of Medicine, a team of physicians from Baylor College of Medicine, Texas Children’s Hospital, and the University of California, San Francisco, describe a remarkable case of a Type 1 diabetes (T1D) patient, who no longer needs insulin to maintain optimal blood sugar levels. The physicians employed a precision/personalized medicine approach to specifically target the underlying genetic mutation, which was the primary driver of this patient’s diabetes.

“To the best of our knowledge, this is the first example of a T1D patient who has experienced a complete reversal of insulin-dependence and we are excited by the prospect that that could be a viable therapeutic strategy for a subset of T1D patients” said corresponding author Dr. Lisa R. Forbes, deputy director for clinical services and community outreach for the Texas Children’s William T. Shearer Center for Human Immunobiology and assistant professor of Pediatrics, Immunology, Allergy and Retrovirology at Baylor.

T1D is a chronic condition in which the pancreas produces little to no insulin, a hormone that maintains sugar levels in the blood. Currently, the treatment options available to T1D patients consist of managing blood sugar levels with insulin, diet and exercise to prevent further complications.

Jan 11, 2022

US man recovering after ‘breakthrough’ pig heart transplant

Posted by in categories: bioengineering, biotech/medical, genetics

A man with terminal heart disease is responding well three days after being given a genetically modified pig heart in a first-of-its-kind surgery, his doctors reported on Monday.
The surgery, performed by a team at the University of Maryland Medicine in the United States, is among the first to demonstrate the feasibility of a pig-to-human heart transplant, a field made possible by new gene editing tools.
If proven successful, scientists hope pig organs could help alleviate shortages of donor organs.
For David Bennett, a 57-year-old from Maryland, the heart transplant was his last option.

Al Jazeera’s Barbara Angopa reports.

Continue reading “US man recovering after ‘breakthrough’ pig heart transplant” »

Jan 10, 2022

Scientists Capture Airborne Animal DNA for the First Time

Posted by in categories: biotech/medical, genetics

Researchers filtered the air around two zoos and identified genetic material from dozens of species, a technique that could help track and conserve wildlife.

Jan 10, 2022

Newcomer Conduit Leverages Frontera to Understand SARS-CoV-2 ‘Budding’

Posted by in categories: biotech/medical, genetics, supercomputing

I am happy to say that my recently published computational COVID-19 research has been featured in a major news article by HPCwire! I led this research as CTO of Conduit. My team utilized one of the world’s top supercomputers (Frontera) to study the mechanisms by which the coronavirus’s M proteins and E proteins facilitate budding, an understudied part of the SARS-CoV-2 life cycle. Our results may provide the foundation for new ways of designing antiviral treatments which interfere with budding. Thank you to Ryan Robinson (Conduit’s CEO) and my computational team: Ankush Singhal, Shafat M., David Hill, Jr., Tamer Elkholy, Kayode Ezike, and Ricky Williams.


Conduit, created by MIT graduate (and current CEO) Ryan Robinson, was founded in 2017. But it might not have been until a few years later, when the pandemic started, that Conduit may have found its true calling. While Conduit €™s commercial division is busy developing a Covid-19 test called nanoSPLASH, its nonprofit arm was granted access to one of the most powerful supercomputers in the world €”Frontera, at the Texas Advanced Computing Center (TACC) €”to model the €œbudding € process of SARS-CoV-2.

Budding, the researchers explained, is how the virus €™ genetic material is encapsulated in a spherical envelope €”and the process is key to the virus €™ ability to infect. Despite that, they say, it has hitherto been poorly understood:

Continue reading “Newcomer Conduit Leverages Frontera to Understand SARS-CoV-2 ‘Budding’” »

Jan 10, 2022

Exotic Forces: Do Tractor Beams Break the Laws of Physics?

Posted by in categories: cosmology, genetics, quantum physics, tractor beam

It depends.

Warp drive. Site-to-site transporter technology. A vast network of interstellar wormholes that take us to bountiful alien worlds. Beyond a hefty holiday wish-list, the ideas presented to us in sci-fi franchises like Gene Roddenberry’s “Star Trek” have inspired countless millions to dream of a time when humans have used technology to rise above the everyday limits of nature, and explore the universe.

Continue reading “Exotic Forces: Do Tractor Beams Break the Laws of Physics?” »

Jan 10, 2022

Transhumanism (Full Documentary)

Posted by in categories: biotech/medical, bitcoin, cryptocurrencies, cyborgs, education, genetics, life extension, transhumanism

TABLE OF CONTENTS —————
0:00–21:02 : Introduction (Meaning of Life)
21:03–46:14 CHAPTER 1: Transhumanism and Life Extension.

TWITTER
https://twitter.com/Transhumanian.

Continue reading “Transhumanism (Full Documentary)” »

Jan 10, 2022

Genflow to become Europe’s first longevity biotech IPO

Posted by in categories: biotech/medical, business, genetics, life extension

The company is developing novel therapeutics targeting aging in humans and dogs by using genetically modified adeno-associated virus (AAV) vectors to deliver copies of the SIRT6 gene variant found in centenarians. SIRT6 has already been shown to have significant capabilities to repair DNA damage, and Genflow’s aim is to show that it can also improve healthspan and, potentially, increase lifespan. “Our business model is to develop our lead compound, GF-1002, that has already yielded encouraging pre-clinical results,” Leire told us. “We are currently undertaking pre-clinical trials which are expected to take approximately two years.


SIRT6 targeting longevity biotech announces intention to float on the London Stock Exchange, with IPO later this month.

Jan 9, 2022

‘Dark genome’ offers insight into bipolar and schizophrenia

Posted by in categories: biotech/medical, genetics, neuroscience

𝙀𝙫𝙤𝙡𝙪𝙩𝙞𝙤𝙣𝙖𝙧𝙮 𝙗𝙞𝙤𝙡𝙤𝙜𝙞𝙨𝙩𝙨 𝙝𝙖𝙫𝙚 𝙩𝙧𝙤𝙪𝙗𝙡𝙚 𝙚𝙭𝙥𝙡𝙖𝙞𝙣𝙞𝙣𝙜 𝙬𝙝𝙮 𝙨𝙘𝙝𝙞𝙯𝙤𝙥𝙝𝙧𝙚𝙣𝙞𝙖 𝙖𝙣𝙙 𝙗𝙞𝙥𝙤𝙡𝙖𝙧 𝙙𝙞𝙨𝙤𝙧𝙙𝙚𝙧 — 𝙬𝙝𝙞𝙘𝙝 𝙖𝙧𝙚 𝙝𝙞𝙜𝙝𝙡𝙮 𝙝𝙚𝙧𝙞𝙩𝙖𝙗𝙡𝙚 𝙘𝙤𝙣𝙙𝙞𝙩𝙞𝙤𝙣𝙨 — 𝙥𝙚𝙧𝙨𝙞𝙨𝙩 𝙞𝙣 𝙥𝙤𝙥𝙪𝙡𝙖𝙩𝙞𝙤𝙣𝙨 𝙙𝙚𝙨𝙥𝙞𝙩𝙚 𝙝𝙖𝙧𝙢𝙞𝙣𝙜 𝙧𝙚𝙥𝙧𝙤𝙙𝙪𝙘𝙩𝙞𝙫𝙚 𝙛𝙞𝙩𝙣𝙚𝙨𝙨.

𝙍𝙚𝙨𝙚𝙖𝙧𝙘𝙝𝙚𝙧𝙨 𝙢𝙖𝙮 𝙝𝙖𝙫𝙚 𝙛𝙤𝙪𝙣𝙙 𝙖𝙣 𝙚𝙭𝙥𝙡𝙖𝙣𝙖𝙩𝙞𝙤𝙣 𝙞𝙣 𝙧𝙚𝙘𝙚𝙣𝙩𝙡𝙮 𝙚𝙫𝙤𝙡𝙫𝙚𝙙 𝙧𝙚𝙜𝙞𝙤𝙣𝙨 𝙤𝙛 𝙩𝙝𝙚 𝙝𝙪𝙢𝙖𝙣 𝙜𝙚𝙣𝙤𝙢𝙚 𝙩𝙝𝙖𝙩 𝙖𝙧𝙚 𝙣𝙤𝙩 𝙪𝙨𝙪𝙖𝙡𝙡𝙮 𝙧𝙚𝙘𝙤𝙜𝙣𝙞𝙯𝙚𝙙 𝙖𝙨 𝙜𝙚𝙣𝙚𝙨 𝙗𝙪𝙩 𝙘𝙖𝙣 𝙨𝙩𝙞𝙡𝙡 𝙘𝙤𝙙𝙚 𝙛𝙤𝙧 𝙥𝙧𝙤𝙩𝙚𝙞𝙣𝙨.

𝙏𝙝𝙞𝙨 “𝙙𝙖𝙧𝙠 𝙜𝙚𝙣𝙤𝙢𝙚” 𝙢𝙖𝙮 𝙜𝙚𝙣𝙚𝙧𝙖𝙩𝙚 𝙥𝙧𝙤𝙩𝙚𝙞𝙣𝙨 𝙩𝙝𝙖𝙩 𝙖𝙧𝙚 𝙫𝙞𝙩𝙖… See more.

Continue reading “‘Dark genome’ offers insight into bipolar and schizophrenia” »

Jan 9, 2022

The Science Behind Why We Age | Lifespan with Dr. David Sinclair #1

Posted by in categories: biotech/medical, genetics, law, life extension, science

Sinclair’s first episode. Enjoy.


In this episode, Dr. David Sinclair and co-host Matthew LaPlante discuss why we age. In doing so, they discuss organisms that have extreme longevity, the genes that control aging (mTOR, AMPK, Sirtuins), the role of sirtuin proteins as epigenetic regulators of aging, the process of “ex-differentiation” in which cells begin to lose their identity, and how all of this makes up the “Information Theory of Aging”, and the difference between “biological age” and “chronological age” and how we can measure biological age through DNA methylation clocks.

Continue reading “The Science Behind Why We Age | Lifespan with Dr. David Sinclair #1” »

Jan 8, 2022

Researchers Use Machine Learning To Repair Genetic Damage

Posted by in categories: biotech/medical, genetics, life extension, robotics/AI

DNA damage is constantly occurring in cells, either due to external sources or as a result of internal cellular metabolic reactions and physiological activities. Accurate repair of such DNA damages is critical to avoid mutations and chromosomal rearrangements linked to diseases including cancer, immunodeficiencies, neurodegeneration, and premature aging.

A team of researchers at Massachusetts General Hospital and the National Cancer Research Centre have identified a way to repair genetic damage and prevent DNA alterations using machine learning techniques.

The researchers state that it is possible to learn more about how cancer develops and how to fight it if we understand how DNA lesions originate and repair. Therefore, they hope that their discovery will help create better cancer treatments while also protecting our healthy cells.