Menu

Blog

Archive for the ‘genetics’ category: Page 249

Jun 16, 2021

Genetically engineered nanoparticle delivers dexamethasone directly to inflamed lungs

Posted by in categories: biotech/medical, engineering, genetics, nanotechnology

Nanoengineers at the University of California San Diego have developed immune cell-mimicking nanoparticles that target inflammation in the lungs and deliver drugs directly where they’re needed. As a proof of concept, the researchers filled the nanoparticles with the drug dexamethasone and administered them to mice with inflamed lung tissue. Inflammation was completely treated in mice given the nanoparticles, at a drug concentration where standard delivery methods did not have any efficacy.

The researchers reported their findings in Science Advances on June 16.

What’s special about these is that they are coated in a cell membrane that’s been genetically engineered to look for and bind to inflamed . They are the latest in the line of so-called cell membrane-coated nanoparticles that have been developed by the lab of UC San Diego nanoengineering professor Liangfang Zhang. His lab has previously used cell membrane-coated nanoparticles to absorb toxins produced by MRSA; treat sepsis; and train the immune system to fight cancer. But while these previous cell membranes were naturally derived from the body’s , the cell membranes used to coat this dexamethasone-filled nanoparticle were not.

Jun 15, 2021

Exoskeleton | Ballistic Helmet | Military Suits

Posted by in categories: bioengineering, climatology, cyborgs, Elon Musk, genetics, military, robotics/AI

https://www.youtube.com/watch?v=rXTsyM78Mbg

✅ Instagram: https://www.instagram.com/pro_robots.

You are on the Pro Robot channel and today we are going to talk about the soldiers of the future. Exoskeletons, ballistic helmets, military suits, chips and more are already being introduced into the armaments of different countries. In this issue we will find out what the super-soldier of the future will be like and what developments are being conducted in the military industry. Watch the video to the end and write your opinion in the comments: will robots replace humans in military service?

Continue reading “Exoskeleton | Ballistic Helmet | Military Suits” »

Jun 15, 2021

When can we begin to apply age reversal gene therapies to humans? Harvards David Sinclair explains

Posted by in categories: biotech/medical, genetics, life extension

In a minute and 27 seconds we get the what from an eye regeneration for mice, to monkey trials to start later this year, to human trials by 2023, and full body in a decade.


David Sinclair—a world-leading biologist, Harvard Medical School Professor, and author of The New York Times best-selling book @Lifespan.

Continue reading “When can we begin to apply age reversal gene therapies to humans? Harvards David Sinclair explains” »

Jun 14, 2021

DNA scanning in the palm of your hand

Posted by in categories: biotech/medical, genetics

Circa 2013 o.,.o.


Inked fingerprints on paper forms. We’ve come a long way from the days when that was the height of forensic technology.

GE is light years ahead after launching a breakthrough portable DNA scanner at the 25th World Congress of the International Society for Forensic Genetics in Melbourne in early September.

Continue reading “DNA scanning in the palm of your hand” »

Jun 14, 2021

Does Telomere Length Really Affect Lifespan?

Posted by in categories: biotech/medical, genetics, life extension

What Are Telomeres?

As our cells divide (a process known as mitosis), our cells replicate the long strands of DNA located within the nucleus of our cells (known as chromosomes). This process however is imperfect, and due to the mechanics of how this is carried out by the body, the DNA is shorted ever so slightly during each replication cycle. I will not get into the details on how exactly this happens in this article, but if you are interested then this video should give you a better understanding of this process. In order to prevent important parts of the DNA being lost through the replication process, areas of what is mostly blank DNA at the end of the chromosomes are used as a sort of sacrificial buffer, allowing for the DNA to be replicated without the loss of genetic information. These areas of the chromosomes are known as telomeres. In addition to providing a buffer zone for DNA replication, telomeres also prevent broken strands of DNA attaching themselves to the ends of chromosomes, which both prevents chromosomes from becoming conjoined, as well as allowing for the opportunity for the broken strand of DNA to be repaired.

Continue reading “Does Telomere Length Really Affect Lifespan?” »

Jun 12, 2021

Calico Scientists Develop Safer Cellular Reprogramming

Posted by in categories: biotech/medical, genetics, life extension

Calico has made some important discoveries about Yamanaka factors.


In a preprint paper, scientists from Calico, Google’s longevity research behemoth, suggest that contrary to our previous understanding, transient reprogramming of cells using Yamanaka factors involves suppressing cellular identity, which may open the door to carcinogenic mutations. They also propose a milder reprogramming method inspired by limb regeneration in amphibians [1].

Rejuvenation that can give you cancer

Continue reading “Calico Scientists Develop Safer Cellular Reprogramming” »

Jun 12, 2021

Genetically engineered microbes convert waste plastic into vanillin

Posted by in categories: biological, genetics

Plastic bottle becomes industrially useful product thanks to biosynthetic transformation.

Jun 11, 2021

South African worker honeybees reproduce

Posted by in categories: biotech/medical, genetics

A team of researchers from the University of Sydney, the ARC-Plant Protection Research Institute and York University, has found that workers in a species of honeybee found in South Africa reproduce by making near-perfect clones of themselves. In their paper published in Proceedings of the Royal Society B, the group describes their study of the bees and what they learned about them.

Prior research has found that some creatures reproduce through parthenogenesis, in which individuals reproduce without mating. This form of reproduction has the advantage of not wasting time and energy on mating and the gene pool remains undiluted. The downside, of course, is loss of genetic diversity, which helps species survive in changing conditions. Prior research has also shown that for most species, parthenogenesis is a less-than-perfect way to produce . This is because some tiny bit of genetic material is generally mixed wrong—these mistakes, known as recombinations, can lead to birth defects or non-productive eggs. In this new effort, the researchers have found a kind of honeybee that has developed a way to avoid recombinations.

The researchers found that South African Cape honeybee queens reproduce sexually, but the workers reproduce asexually. They then conducted a small experiment—they affixed tape to the reproductive organs of a queen, preventing males from mating with her, and then allowed both her and the worker bees in the same hive to reproduce asexually. They then tested the degree of recombination in both. They found that offspring of the queen had approximately 100 times as much recombination as the worker bees. Even more impressive, the offspring of the worker bees were found to be nearly identical clones of their parent. More testing showed that one line of worker bees in the hive had been cloning themselves for approximately 30 years—a clear sign that workers in the hive were not suffering from birth defects or an inability to produce viable offspring. It also showed that they have evolved a means for preventing recombination when they reproduce.

Jun 11, 2021

New research in protein sequencing poised to transform medicine

Posted by in categories: bioengineering, biotech/medical, genetics

While DNA provides the genetic recipe book for biological form and function, it is the job of the body’s proteins to carry out the complex commands dictated by DNA’s genetic code.

Stuart Lindsay, a researcher at the Biodesign Institute at ASU, has been at the forefront of efforts to improve rapid DNA sequencing and has more recently applied his talents to explore the much thornier problem of sequencing molecules, one molecule at a time.

In a new overview article, Lindsay’s efforts are described along with those of international colleagues, who are applying a variety of innovative strategies for protein sequencing at the single-cell, and even single-molecule level.

Jun 10, 2021

Young Blood Plasma Reduces the Epigenetic Age of Rats

Posted by in categories: biotech/medical, genetics

Preliminary results from young blood plasma transfusions in mice are showing some really promising results!


For organisms like us, survival is a team sport. I do not mean in the sense of being a pack animal that forms mutually beneficial relationships with others in order to increase the likelihood of acquiring protection and resources (although this is certain true), but instead to the fundamental functions of our biology. The cells which make up our body are all in essence working towards the goal of survival, and in turn work with one another in a variety of different ways. As anyone who has ever worked in a team will tell you, communication is key, and without it a team is doomed to failure. However, often poor or incorrect communication can be even worse than no communication at all.