Menu

Blog

Archive for the ‘genetics’ category: Page 258

Mar 30, 2021

Researchers Find The Gene Responsible For One of The Deadliest Breast Cancer Types

Posted by in categories: biotech/medical, genetics

Researchers in Australia have discovered a gene responsible for a particularly aggressive type of hormone-sensitive breast cancer which has tragically low survival rates.

“Hopefully this will dramatically improve the poor outcomes these patients currently suffer,” said Harry Perkins Institute of Medical Research epigeneticist Pilar Blancafort.

It’s hard to overstate just how different cancers can be from one another. Even under the umbrella of ‘breast cancer’ lie several types, such as hormone receptor sensitive, HER2 positive, or non-hormone sensitive breast cancer; within those groups, there are even more types that can respond to treatments differently from one another.

Mar 30, 2021

New drug to regenerate lost teeth

Posted by in categories: biotech/medical, genetics

Experiments with this antibody revealed that BMP signaling is essential for determining the number of teeth in mice. Moreover, a single administration was enough to generate a whole tooth.


Japan — The tooth fairy is a welcome guest for any child who has lost a tooth. Not only will the fairy leave a small gift under the pillow, but the child can be assured of a new tooth in a few months. The same cannot be said of adults who have lost their teeth.

A new study by scientists at Kyoto University and the University of Fukui, however, may offer some hope. The team reports that an antibody for one gene — uterine sensitization associated gene-1 or USAG-1 — can stimulate tooth growth in mice suffering from tooth agenesis, a congenital condition. The paper was published in Science Advances.

Continue reading “New drug to regenerate lost teeth” »

Mar 29, 2021

Brain cell clusters, grown in lab for more than a year, mirror changes in a newborn’s brain

Posted by in categories: biotech/medical, chemistry, genetics, neuroscience

Stanford University neurobiologist Sergiu Pașca has been making brain organoids for about 10 years, and his team has learned that some of these tissue blobs can thrive in a dish for years. In the new study, they teamed up with neurogeneticist Daniel Geschwind and colleagues at the University of California, Los Angeles (UCLA), to analyze how the blobs changed over their life spans…

…They noticed that when an organoid reached 250 to 300 days old—roughly 9 months—its gene expression shifted to more closely resemble that of cells from human brains soon after birth. The cells’ patterns of methylation—chemical tags that can affix to DNA and influence gene activity—also corresponded to increasingly mature human brain cells as the organoids aged, the team reports today in Nature Neuroscience.


Organoids develop genetic signatures of postnatal brains, possibly broadening their use as disease models.

Continue reading “Brain cell clusters, grown in lab for more than a year, mirror changes in a newborn’s brain” »

Mar 29, 2021

A Sleep Disorder Associated With Shift Work May Affect Gene Function

Posted by in categories: biotech/medical, genetics, health, neuroscience

Sleep deprivation causes an inflammatory response that results in negative health outcomes.


Summary: Study sheds light on DNA methylation related to sleep deprivation in those with shift-work disorder.

Source: University of Helsinki

Continue reading “A Sleep Disorder Associated With Shift Work May Affect Gene Function” »

Mar 29, 2021

Researchers invent new gene-editing tool

Posted by in categories: biotech/medical, genetics

Researchers can now control the order in which CAS9 makes edits to cell DNA instead of performing all edits at once.


Researchers from the University of Illinois Chicago have discovered a new gene-editing technique that allows for the programming of sequential cuts—or edits—over time.

CRISPR is a gene-editing tool that allows scientists to change the DNA sequences in and sometimes add a desired sequence or genes. CRISPR uses an enzyme called Cas9 that acts like scissors to make a cut precisely at a desired location in the DNA. Once a cut is made, the ways in which cells repair the DNA break can be influenced to result in different changes or edits to the DNA sequence.

Continue reading “Researchers invent new gene-editing tool” »

Mar 29, 2021

Scientists use lipid nanoparticles to precisely target gene editing to the liver

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

The genome editing technology CRISPR has emerged as a powerful new tool that can change the way we treat disease. The challenge when altering the genetics of our cells, however, is how to do it safely, effectively, and specifically targeted to the gene, tissue and organ that needs treatment. Scientists at Tufts University and the Broad Institute of Harvard and MIT have developed unique nanoparticles comprised of lipids—fat molecules—that can package and deliver gene editing machinery specifically to the liver. In a study published today in the Proceedings of the National Academy of Sciences, they have shown that they can use the lipid nanoparticles (LNPs) to efficiently deliver the CRISPR machinery into the liver of mice, resulting in specific genome editing and the reduction of blood cholesterol levels by as much as 57%—a reduction that can last for at least several months with just one shot.

The problem of high cholesterol plagues more than 29 million Americans, according to the Centers for Disease Control and Prevention. The condition is complex and can originate from multiple as well as nutritional and lifestyle choices, so it is not easy to treat. The Tufts and Broad researchers, however, have modified one gene that could provide a protective effect against elevated cholesterol if it can be shut down by gene editing.

The gene that the researchers focused on codes for the angiopoietin-like 3 enzyme (Angptl3). That enzyme tamps down the activity of other enzymes—lipases—that help break down cholesterol. If researchers can knock out the Angptl3 gene, they can let the lipases do their work and reduce levels of cholesterol in the blood. It turns out that some lucky people have a natural mutation in their Angptl3 gene, leading to consistently low levels of triglycerides and low-density lipoprotein (LDL) cholesterol, commonly called “bad” cholesterol, in their bloodstream without any known clinical downsides.

Mar 29, 2021

Evolution drives autism and other conditions to occur much more frequently in boys

Posted by in categories: biotech/medical, evolution, genetics, health, neuroscience

In autism, male-female imbalance is especially pronounced. Boys are as much as four times more likely to have some form of autism and are also more likely to have severe symptoms.


HAMILTON, ON, March 3, 2021 — Evolutionary forces drive a glaring gender imbalance in the occurrence of many health conditions, including autism, a team of genetics researchers has concluded.

The human genome has evolved to favour the inheritance of very different characteristics in males and females, which in turn makes men more vulnerable to a host of physical and mental health conditions, say the researchers responsible for a new paper published in the Journal of Molecular Evolution.

Continue reading “Evolution drives autism and other conditions to occur much more frequently in boys” »

Mar 29, 2021

Should We Genetically Engineer Carbon-Hungry Trees?

Posted by in categories: genetics, innovation

“If you don’t do both, you’re not going to get very far,” he says. He wants to bring “carbon drawdown” technologies into the conversation with genetically modified trees.

Last year, DeLisi organized a workshop with a team of heavy hitters — Sir Richard Roberts (biochemist, Nobel laureate, and staunch advocate for GMOs), Val Giddings (a geneticist at the Information Technology and Innovation Foundation), and researchers from Oak Ridge National Laboratory — to create solutions, like genetically modifying carbon-hungry trees.

And they are close.

Mar 29, 2021

We Finally Know How Sperm ‘Remember’ And Pass on Non-DNA-Coded Traits to Embryos

Posted by in categories: biotech/medical, genetics

Studies in mammals have shown that the ‘memories’ of various environmental effects – such as diet, weight, and stress – are being passed on from dads to offspring, despite these states not being coded for in the DNA sequences carried by sperm. Now, we have a new explanation for how it’s possible.

The story has much to do with epigenetics. Molecules that attach themselves to DNA can act like on-off switches that control which sections of DNA get used – but until now we haven’t known which of these molecules can carry the settings marked by a father’s life experiences, to be incorporated into an embryo via sperm.

“The big breakthrough with this study is that it has identified a non-DNA-based means by which sperm remember a father’s environment (diet) and transmit that information to the embryo,” said McGill University epigeneticist Sarah Kimmins.

Mar 29, 2021

Sangamo, Sanofi Show Positive Early Data for SCD Gene-Edited Cell Therapy

Posted by in categories: biotech/medical, genetics

An ex vivo gene-edited cell therapy for sickle cell disease (SCD) being developed by Sangamo Therapeutics and Sanofi has generated positive early Phase I/II results in three patients—data that persuaded a committee of the European Medicines Agency (EMA) to support an orphan designation for the drug candidate.

The EMA’s Committee for Orphan Medicinal Products (COMP) has adopted a positive opinion for the orphan designation for BIVV003 (autologous CD34+ hematopoietic stem and progenitor cells transfected with zinc finger nuclease mRNAs SB-mRENH1 and SB-mRENH2) following its meeting of January 19–21— minutes of which were posted this month on the EMA’s website.

COMP based its recommendation on data showing that the first three patients with sickle cell disease ended up “without recurrence of previous SCD symptoms” following treatment with BIVV003 in the Phase I/II PRECIZN-1 trial (NCT03653247).