Menu

Blog

Archive for the ‘genetics’ category: Page 312

Mar 7, 2020

Origin and evolution of pathogenic coronaviruses

Posted by in categories: biotech/medical, genetics, government

The origins are still too unknown. This is entirely new life a more parasitic lifeform. Bit still new lifeforms entirely. My experiencers tell me of alien origin though the rate of spread also the complexity. No human could make this no even government can make this. We can mimic life not create something new. Sure new things can be added but the signature tells me it is definitely of alien origin. Not even nature can create something this quick nor even governments. Sure there may be like similar things but why does it spread so fast in near systematic precision. Which leads to essentially of exterrestial origin. This is essentially new life we are dealing with.


Nat Rev Microbiol. 2019 Mar;17:181–192. doi: 10.1038/s41579-018‑0118-9.

Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are two highly transmissible and pathogenic viruses that emerged in humans at the beginning of the 21st century. Both viruses likely originated in bats, and genetically diverse coronaviruses that are related to SARS-CoV and MERS-CoV were discovered in bats worldwide. In this Review, we summarize the current knowledge on the origin and evolution of these two pathogenic coronaviruses and discuss their receptor usage; we also highlight the diversity and potential of spillover of bat-borne coronaviruses, as evidenced by the recent spillover of swine acute diarrhoea syndrome coronavirus (SADS-CoV) to pigs.

Mar 7, 2020

Study: Rapamycin has harmful effects when telomeres are short

Posted by in categories: biotech/medical, genetics, life extension

In the past few decades, researchers discovered that the rate at which we age is strongly influenced by biochemical processes that, at least in animal models, can be controlled in the laboratory. Telomere shortening is one of these processes; another is the ability of cells to detect nutrients mediated by the mTOR protein. Researchers have been able to prolong life in many species by modifying either one of them. But what if they manipulate both?

A team from the Spanish National Cancer Research Centre (CNIO) has studied it for the first time, with unexpected results. Blocking nutrient sensing by treatment with rapamycin, an mTOR inhibitor, delays the aging of healthy , but curiously, it worsens diseases and premature aging that occur in mice with short telomeres. This finding has important implications for the treatment of diseases associated with short telomeres, but also for that are also associated with short telomeres. The study, done by the Telomeres and Telomerase Group headed by Maria Blasco at the CNIO, is published in Nature Communications with Iole Ferrara-Romeo as the first author.

Telomeres, regions of repetitive nucleotide sequences at the end of chromosomes, preserve the genetic information of the cells. They shorten with age until they can no longer fulfill their function: The cells stop dividing and the tissues age since they are no longer able to regenerate.

Mar 6, 2020

Genome Sequencing for Healthy People: Is it Time?

Posted by in categories: biotech/medical, genetics, health, neuroscience

Would you want to know if you’re at risk of Alzheimer’s disease, for example?


The integration of sequencing into health care doesn’t fit very well in the model of how medicine is practiced today, but is well aligned with the future vision of health care that so many of us have — a vision that focuses upon prediction and prevention.

Continue reading “Genome Sequencing for Healthy People: Is it Time?” »

Mar 6, 2020

Gene Therapy: Is Still In Its Infancy But The Future Looks Promising

Posted by in categories: biotech/medical, genetics

Gene therapy is the introduction of DNA into a patient to treat a genetic disease or a disorder. The newly inserted DNA contains a correcting gene to correct the effects of a disease, causing mutations. Gene therapy is a promising treatment for genetic diseases and also includes cystic fibrosis and muscular dystrophy. Gene therapy is a suitable treatment for infectious diseases, inherited disease and cancer.

Over the last few centuries, infectious diseases have been understood and tackled, through advances in sanitation, anti-microbial medications and vaccination. One day we may also be able to tackle genetic diseases – lifelong conditions arising from mutations that we inherit from our ancestors or that occur during our development.

Mar 6, 2020

Human gene editing is too transformative to be guided by the few

Posted by in categories: bioengineering, biotech/medical, genetics, health

My editorial from today’s (3/18/19) Financial Times:

Far sooner than most people realise, the genetics revolution will transform the world within and around us. Although we think about genetic technologies primarily in the context of healthcare, these tools are set to change the way we make babies, the nature of the babies we make and, ultimately, our evolutionary trajectory as a species — and we are not remotely ready for what’s coming. Yet we must be, to optimise the benefits and minimise the potential harms of genetic technologies.

Continue reading “Human gene editing is too transformative to be guided by the few” »

Mar 6, 2020

In World First, CRISPR Used on Patient’s Eye in Attempt to Cure Genetic Blindness

Posted by in categories: biotech/medical, genetics, health

For the first time, doctors have attempted to cure blindness by gene-hacking a patient with CRISPR technology.

A team from Oregon Health & Science Institute injected three droplets of fluid that delivered the CRISPR DNA fragments directly into a patient’s eyeball, The Associated Press reports, in hopes that it will reverse a rare genetic condition called Leber congenital amaurosis, which causes blindness early in childhood.

“We literally have the potential to take people who are essentially blind and make them see,” Charles Albright, chief scientific officer of Editas Medicine, told the AP.

Mar 6, 2020

Gene-editing tool CRISPR used inside a human’s body for the first time, scientists say

Posted by in categories: bioengineering, biotech/medical, genetics

Scientists say they have used the gene editing tool CRISPR inside someone’s body for the first time — offering a new frontier for efforts to operate on DNA, the chemical code of life, to treat diseases.

A patient recently had it done at the Casey Eye Institute at Oregon Health & Science University in Portland for an inherited form of blindness, according to the companies that make the treatment. The company would not give details on the patient or when the surgery occurred.

It may take up to a month to see if it worked to restore the patient’s vision. If the first few attempts seem safe, doctors plan to test it on 18 children and adults.

Mar 5, 2020

Our Genetic Future Is Coming… Faster Than We Think

Posted by in categories: bioengineering, biotech/medical, evolution, food, genetics

If there was a public vote about human gene enhancement, would you vote YES or NO?


Our species is on the cusp of a revolution that will change every aspect of our lives but we’re hardly talking about it.

Continue reading “Our Genetic Future Is Coming… Faster Than We Think” »

Mar 5, 2020

CRISPR Scientists Hack Patient’s Genes in Bid to Cure Blindness

Posted by in categories: biotech/medical, genetics, health

For the first time, doctors have attempted to cure blindness by gene-hacking a patient with CRISPR technology.

A team from Oregon Health & Science Institute injected three droplets of fluid that delivered the CRISPR DNA fragments directly into a patient’s eyeball, The Associated Press reports, in hopes that it will reverse a rare genetic condition called Leber congenital amaurosis, which causes blindness early in childhood.

“We literally have the potential to take people who are essentially blind and make them see,” Charles Albright, chief scientific officer of Editas Medicine, told the AP. Editas is one of the biotech companies that actually developed the treatment. “We think it could open up a whole new set of medicines to go in and change your DNA.”

Mar 5, 2020

Genome Assembly — The Holy Grail of Genome Analysis

Posted by in categories: biotech/medical, genetics

The 2019 novel coronavirus or coronavirus disease (COVID-19) outbreak has threatened the entire world at present. Scientists are working day and night to understand the origin of COVID-19. You may have heard the news recently that the complete genome of COVID-19 has been published. How did scientists figure out the complete genome of COVID-19? In this article, I will explain how we can do this.

A genome is considered as all the genetic material, including all the genes of an organism. The genome contains all the information of an organism that is required to build and maintain it.

How can we read the information present in the genome? This is where sequencing comes into action. Assuming you have read my previous article on DNA analysis, you know that sequencing is used to determine the sequence of individual genes, full chromosomes or entire genomes of an organism.