Toggle light / dark theme

If there was a public vote about human gene enhancement, would you vote YES or NO?


Our species is on the cusp of a revolution that will change every aspect of our lives but we’re hardly talking about it.

After three and a half billion years of evolution, two hundred and fifty thousand years of them as the ass-kicking bipedal hominins we call homo sapiens, we are on the verge of taking control of our evolutionary process unlike never before. This revolution will take hundreds of years to play out but it has already begun.

For the first time, doctors have attempted to cure blindness by gene-hacking a patient with CRISPR technology.

A team from Oregon Health & Science Institute injected three droplets of fluid that delivered the CRISPR DNA fragments directly into a patient’s eyeball, The Associated Press reports, in hopes that it will reverse a rare genetic condition called Leber congenital amaurosis, which causes blindness early in childhood.

“We literally have the potential to take people who are essentially blind and make them see,” Charles Albright, chief scientific officer of Editas Medicine, told the AP. Editas is one of the biotech companies that actually developed the treatment. “We think it could open up a whole new set of medicines to go in and change your DNA.”

The 2019 novel coronavirus or coronavirus disease (COVID-19) outbreak has threatened the entire world at present. Scientists are working day and night to understand the origin of COVID-19. You may have heard the news recently that the complete genome of COVID-19 has been published. How did scientists figure out the complete genome of COVID-19? In this article, I will explain how we can do this.

A genome is considered as all the genetic material, including all the genes of an organism. The genome contains all the information of an organism that is required to build and maintain it.

How can we read the information present in the genome? This is where sequencing comes into action. Assuming you have read my previous article on DNA analysis, you know that sequencing is used to determine the sequence of individual genes, full chromosomes or entire genomes of an organism.

Viruses and mobile genetic elements are molecular parasites or symbionts that coevolve with nearly all forms of cellular life. The route of virus replication and protein expression is determined by the viral genome type. Comparison of these routes led to the classification of viruses into seven “Baltimore classes” (BCs) that define the major features of virus reproduction. However, recent phylogenomic studies identified multiple evolutionary connections among viruses within each of the BCs as well as between different classes. Due to the modular organization of virus genomes, these relationships defy simple representation as lines of descent but rather form complex networks. Phylogenetic analyses of virus hallmark genes combined with analyses of gene-sharing networks show that replication modules of five BCs (three classes of RNA viruses and two classes of reverse-transcribing viruses) evolved from a common ancestor that encoded an RNA-directed RNA polymerase or a reverse transcriptase. Bona fide viruses evolved from this ancestor on multiple, independent occasions via the recruitment of distinct cellular proteins as capsid subunits and other structural components of virions. The single-stranded DNA (ssDNA) viruses are a polyphyletic class, with different groups evolving by recombination between rolling-circle-replicating plasmids, which contributed the replication protein, and positive-sense RNA viruses, which contributed the capsid protein. The double-stranded DNA (dsDNA) viruses are distributed among several large monophyletic groups and arose via the combination of distinct structural modules with equally diverse replication modules. Phylogenomic analyses reveal the finer structure of evolutionary connections among RNA viruses and reverse-transcribing viruses, ssDNA viruses, and large subsets of dsDNA viruses. Taken together, these analyses allow us to outline the global organization of the virus world. Here, we describe the key aspects of this organization and propose a comprehensive hierarchical taxonomy of viruses.

Scientists at Uppsala University have proposed an addition to the theory of evolution that can explain how and why genes move on chromosomes. The hypothesis, called the SNAP Hypothesis, is presented in the scientific journal PLOS Genet ics.

Life originated on Earth almost 4 billion years ago and diversified into a vast array of species. How did this diversification occur? The Theory of Evolution, together with the discovery of DNA and how it replicates, provide an answer and a mechanism. Mutations in DNA occur from generation to generation, and can be selected if they help individuals to adapt better to their environment. Over time, this has led to the separation of organisms into the different species that now inhabit all ecosystems.

Current theory holds that evolution involves mistakes made when replicating a gene. This explains how genes can mutate over time and acquire new functions. However, a mystery in biology is that the relative locations of genes on also change over time. This is obvious in bacteria, as different species often have the same genes in very different relative locations. Since the , genes have apparently been changing location. The questions are, how and why do genes move their relative locations?

An international team of researchers that pooled genetic samples from developmentally disabled patients from around the world has identified dozens of new mutations in a single gene that appears to be critical for brain development.

“This is important because there are a handful of that are recognized as ‘hot spots’ for causing ,” said lead author Debra Silver, an associate professor of molecular genetics and microbiology in the Duke School of Medicine. “This gene, DDX3X, is going to be added to that list now.”

An analysis led by the Elliott Sherr lab at the University of California-San Francisco found that half of the DDX3X mutations in the 107 children studied caused a loss of function that made the gene stop working altogether, but the other half caused changes predicted to disrupt the function of the gene.

This month, K.L. became one of the first patients to receive a new experimental gene therapy for children with a severe form of inherited vision loss. The treatment, currently not yet named, targets young men who are susceptible to a particularly vicious genetic disorder that gradually destroys the light-sensing portion of their eyes.

Within a month following a single injection, “my vision was beginning to return in the treated eye. The sharpness and depth of colors I was slowly beginning to see were so clear and attractive,” said K.L.

The trial, a first-in-human case for X-linked Retinitis Pigmentosa (RP), was led by Dr. Robert MacLaren at the University of Oxford but spanned multiple centers including the Bascom Palmer Eye Institute in Miami, which previously championed Luxterna, the first FDA-approved gene therapy for a type of inherited blindness. The results are some of the first targeting a particularly difficult gene prone to mutation in humans. Amazingly, despite some inflammation in early stages, the therapy provided massive improvements in eyesight as early as two weeks following treatment.

Is it so outlandish to believe that countries in the future might resort to military force to prevent other countries from altering the shared genetic code of humanity? Many countries have been invaded for far less.


The genetics revolution that will transform our health care, the way we make babies, the nature of the babies we make, and ultimately our evolutionary trajectory as a species has already begun. Just like parents in many places will need to make tough choices about whether, if at all, to genetically engineer their children, states will be forced to make monumental collective decisions on these issues with potentially fateful consequences.

Imagine you are the leader of a society that has chosen to opt out of the genetic arms race by banning embryo selection and the genetic alteration of human sperm, eggs, and embryos. Because your country is progressive enough to make a collective decision like this, parents desiring these services are free to go elsewhere to get what they want. But preventing the genetic alteration of your population by definition requires both restricting genetic enhancement at home and enhanced people or expectant mothers carrying genetically altered embryos from entering your country.

The gene-editing tool CRISPR has been used for the first time inside the body of an adult, in an attempt to cure a form of blindness.

The treatment: According to the Associated Press, doctors dripped just a few drops of a gene-editing mixture beneath the retina of a patient in Oregon who suffers from Leber congenital amaurosis, a rare inherited disease that leads to progressive vision loss.

Cells that take up the mixture can have their DNA permanently corrected, potentially restoring a degree of vision.