Menu

Blog

Archive for the ‘genetics’ category: Page 368

Jun 9, 2019

The gene therapy revolution is here. Medicine is scrambling to keep pace

Posted by in categories: biotech/medical, genetics

Greg Dore at the Kirby Institute of NSW participated in Australia’s Hepatitis C pricing discussions, and believes our model will work for the new gene therapy drugs – notwithstanding their eye-popping price tags – and the fact that the patient populations for these rare genetic diseases will be tiny.

However, the real reason companies are getting into gene therapy is not just to treat rare disease. It’s because they realise this technology will be a game changer for medicine.

Read more

Jun 7, 2019

CRISPR-associated transposons able to insert custom genes into DNA without cutting it

Posted by in categories: bioengineering, biotech/medical, genetics, health

A team of researchers affiliated with the Broad Institute of MIT and Harvard, MIT and the National Institutes of Health has found that CRISPR-associated transposons can be used to insert custom genes into DNA without cutting it. In their paper published in the journal Science, the group describes their new gene-editing technique and how well it worked when tested in a bacterial genome.

The CRISPR gene editing has made headlines in recent years due to its potential for treating hereditary diseases. Unfortunately, despite much research surrounding the technique, it is still not a viable option for use on human patients. This is because the technique is error-prone—when snipping strands of DNA, CRISPR sometimes cuts off-target DNA as well, leading to unintended and unpredictable consequences (and sometimes cancerous tumors). In this new effort, the researchers have found a way to use CRISPR in conjunction with another protein to edit a strand of DNA without cutting it—they are calling it CRISPR-associated transposase (CAST).

Prior research has shown that certain pieces of DNA called transposons are, for unknown reasons, able to reposition themselves in a genome spontaneously—for this reason, they have come to be known as jumping genes. Not long after they were discovered, researchers noted that they might be used for gene editing. This is what the researchers did in the new study. They associated a transposon called Tn7 with the Cas12 enzyme used with CRISPR to edit a section of a bacterial genome. In practice, CRISPR led the Tn7 transposon to the target location in the genome—at that point, the transposon inserted itself into the without cutting it.

Continue reading “CRISPR-associated transposons able to insert custom genes into DNA without cutting it” »

Jun 6, 2019

First-ever spider glue genes sequenced, paving way to next biomaterials breakthrough

Posted by in categories: biotech/medical, genetics

UMBC postdoctoral fellow Sarah Stellwagen and co-author Rebecca Renberg at the Army Research Lab have published the first-ever complete sequences of two genes that allow spiders to produce glue—a sticky, modified version of spider silk that keeps a spider’s prey stuck in its web. The findings appeared in Genes, Genomes, Genetics.

The innovative method they employed could pave the way for others to sequence more silk and glue , which are challenging to sequence because of their length and repetitive structure. Better understanding of these genes could move scientists closer to the next big advance in biomaterials.

Read more

Jun 6, 2019

Scientists identify gene that helps people live to a ripe old age

Posted by in categories: biotech/medical, genetics, neuroscience

Researchers at Amsterdam’s UMC have identified a rare gene that halves people’s chances of developing dementia in old age.

People with the genetic variant, which occurs in around 1% of the population, are also more likely to live longer. The researchers studied 16 different sample populations in Europe and North America, including a number of people over the age of 100, for the study published in the journal Acta Neuropathologica.

The discovery could potentially be used to treat Alzheimer’s disease and other degenerative illnesses such as frontotemporal and Lewy body dementia.

Continue reading “Scientists identify gene that helps people live to a ripe old age” »

Jun 5, 2019

David Sinclair – Slowing down Aging (VIDEO)

Posted by in categories: biotech/medical, education, genetics, life extension

https://youtube.com/watch?v=lA4DbN01q70

David A. Sinclair, Ph.D., A.O. is an Australian biologist and a Professor in the Department of Genetics and co-Director of the Paul F. Glenn Center for the Biology of Aging at Harvard Medical School. He is best known for his work on understanding why we age and how to slow its effects. He obtained his Ph.D. in Molecular Genetics at the University of New South Wales, Sydney, and received the Australian Commonwealth Prize. In 1995, he received a Ph.D. in Molecular Genetics then worked as a postdoctoral researcher at the Massachusetts Institute of Technology with Leonard Guarente. Since 1999 he has been a tenured professor in the Genetics Department of Harvard Medical School.

Dr. Sinclair is co-founder of several biotechnology companies (Sirtris, Ovascience, Genocea, Cohbar, MetroBiotech, ArcBio, Liberty Biosecurity) and is on the boards of several others. He is also co-founder and co-chief editor of the journal Aging. His work is featured in five books, two documentary movies, 60 Minutes, Morgan Freeman’s “Through the Wormhole” and other media.

Continue reading “David Sinclair – Slowing down Aging (VIDEO)” »

Jun 5, 2019

Professor Irena Cosic PhD. — RMIT — Australia — Electromagentic Resonant Recognition Model of Macromolecular Interactions — ideaXme — Ira Pastor

Posted by in categories: aging, bioengineering, biotech/medical, business, DNA, genetics, health, life extension, science, transhumanism

Jun 5, 2019

Harvard breakthrough shows stem cells can be genetically edited in the body

Posted by in categories: biotech/medical, genetics

We owe our long lives to stem cells, which are nestled deep inside certain tissues in the body and constantly replace old cells. In recent years scientists have been able to correct genetic diseases by removing these stem cells, editing their genomes and then implanting them back into the patient, but that adds complications. Now, new research led by Harvard scientists has successfully edited the genes of stem cells while still in the body.

Read more

Jun 3, 2019

CRISPR baby mutation significantly increases mortality

Posted by in categories: biotech/medical, genetics

Six months ago, a Chinese scientist announced that he had edited the genomes of two babies born last year. The germline edits with CRISPR-Cas9 supposedly changed the CCR5 gene to prevent HIV from invading immune cells. An analysis of records in the U.K. Biobank shows that having two copies of this mutation is associated with a 21 percent increase in mortality.

Read more

Jun 3, 2019

New Gene-Editing Method Could Lead To “Creation of a Super-Baby”

Posted by in categories: biotech/medical, genetics

“The technology is similar to weapons and drugs…creation of a super-baby should be banned forever.”


The scientist behind the tech is calling for a ban.

Read more

Jun 3, 2019

First gene-edited babies may be at risk of early death

Posted by in category: genetics

In 2018, a Chinese researcher shocked the world by announcing the birth of two gene-edited babies. The mutations may have hurt, not helped.

Read more