Menu

Blog

Archive for the ‘health’ category: Page 130

Dec 8, 2022

Vladimir Putin’s Health Called Into Question After Russian Leader Looks ‘Critically Ill’ During Chilling Nuclear War Warning To Ukraine

Posted by in categories: existential risks, health, nuclear energy

Earth has been hit by an intense, unusual blast of light that could change our understanding of the universe, scientists have said.

Late last year, scientists spotted a 50-second-long blast of energy coming towards Earth, known as a gamma-ray burst or GRB, which are the most powerful explosions in the universe. Immediately, researchers started looking for the afterglow that such blasts leave behind, with that visible light being useful to find where the blast has come from.

Dec 8, 2022

The CRISPR Apostle: Rodolphe Barrangou

Posted by in categories: bioengineering, biotech/medical, drones, food, genetics, health

http://www.iBiology.org.

For millennia, humans have been harnessing #microbes to produce everything from breads, to cheeses, to alcohol. Now these tiny organisms have produced another powerful revolution — the gene editing tool CRISPR. Rodolphe Barrangou, Ph.D., was working at the food company Danisco, where he was trying to produce yogurt lines resistant to contamination. In a series of groundbreaking experiments, he helped uncover what CRISPR was, how it worked, and why it could be so transformative.

Continue reading “The CRISPR Apostle: Rodolphe Barrangou” »

Dec 7, 2022

Good Morning 2033

Posted by in categories: augmented reality, health, robotics/AI, virtual reality

Good Morning, 2033 — A Sci-Fi Short Film.

What will your average morning look like in 2033? And who hacked us?

Continue reading “Good Morning 2033” »

Dec 7, 2022

Biomembrane research findings could advance understanding of computing and human memory

Posted by in categories: bioengineering, biological, computing, health, nanotechnology

While studying how bio-inspired materials might inform the design of next-generation computers, scientists at the Department of Energy’s Oak Ridge National Laboratory achieved a first-of-its-kind result that could have big implications for both edge computing and human health.

Results published in Proceedings of the National Academy of Sciences show that an artificial is capable of long-term potentiation, or LTP, a hallmark of biological learning and . This is the first evidence that a cell membrane alone—without proteins or other biomolecules embedded within it—is capable of LTP that persists for many hours. It is also the first identified nanoscale structure in which memory can be encoded.

“When facilities were shut down as a result of COVID, this led us to pivot away from our usual membrane research,” said John Katsaras, a biophysicist in ORNL’s Neutron Sciences Directorate specializing in neutron scattering and the study of biological membranes at ORNL.

Dec 7, 2022

Robots Will Replace These Workers By 2025

Posted by in categories: biotech/medical, employment, health, robotics/AI

This post is also available in: he עברית (Hebrew)

How soon will we be seeing robots walking about the street? How soon will robots join medical staff in hospitals and aid real people in life or death situations? How soon will robots replace health staff? The World Health Organization (WHO) estimates that we will see a global shortfall of 12 million health workers by 2025.

From lifting patients and delivering lab samples, to cleaning and providing companionship, care robots can help with a range of tasks across a hospital or care setting. With nurses spending up to a third of their shift on menial tasks such as collecting equipment, the expectation is that care robots will be able to take ownership of these more mundane jobs, letting health staff focus on more important tasks.

Dec 7, 2022

Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications

Posted by in categories: biotech/medical, chemistry, health, nanotechnology

Two categories of nanofabrication technologies are known as top-down and bottom-up approaches [5]. For the former, nanosized materials are prepared through the rupture of bulk materials to fine particles, and such a process is usually conducted by diverse physical and mechanical techniques like lithography, laser ablation, sputtering, ball milling and arc-discharging [6, 7]. These techniques themselves are simple, and nanosized materials can be produced quickly after relatively short technological process, but expensive specialized equipment and high energy consumption are usually inevitable. Meanwhile, a variety of efficient chemical bottom-up methods, where atoms assemble into nuclei and then form nanoparticles, have been intensively studied to synthesize and modulate nanomaterials with specific shape and size [8].

Indeed, chemical methodologies, including but not limited to, aqueous reaction using chemical reducing agents (e.g. hydrazine hydrate and sodium borohydride), electrochemical deposition, hydrothermal/solvothermal synthesis, sol–gel processing, chemical liquid/vapor deposition, have been developed up to now [5, 6]. These approaches can not only produce diverse nanomaterials with fairly high yields, but also endow fine controllability in tailoring nanostructures and properties of the products. Nevertheless, they have been encountering some serious challenges of harsh reaction conditions (e.g. pH and temperature), potential risks in human health and environment, and low cost-effectiveness. Moreover, there are biosafety concerns on products synthesized chemically using hazardous reagents, which restricts their applications in many areas, particularly in medicines and pharmaceuticals [9].

Impressively, biological methodology is becoming a favourite in nanomaterial synthesis nowadays to address challenges in chemical synthesis. Compared to chemical routes, biosynthesis using natural and biological materials as reducing, stabilizing and capping agents are simple, energy-and cost-effective, mild and environment-friendly, which is termed as “Green Chemistry” [2, 6]. More significantly, the biologically synthesized nanomaterials have much better competitiveness in biocompatibility, compared to those chemically derived counterparts. On the one hand, the biogenic nanomaterials are free from toxic contamination of by-products that are usually involved in chemical synthesis process; on the other hand, the biosynthesis do not need additional stabilizing agents because either the used organisms themselves or their constituents can act as capping and stabilizing agents and the attached biological components in turn form biocompatible envelopes on the resultant nanomaterials, leading to actively interact with biological systems [2]. As one of the most abundant biological resources, some microorganisms have adapted to habitat contaminated with toxic metals, and thus evolved powerful tactics for remediating polluted environment while recycling metal resources [7, 10], and some review articles on the biosynthesis of MNPs using diverse microorganisms including bacteria, yeast, fungi, alga, etc. and their applications have been published in recent years [1, 2, 6, 7, 10].

Dec 6, 2022

How robotic honeybees and hives could help the species fight back

Posted by in categories: health, robotics/AI

Robots that can monitor conditions in a hive, do a waggle dance, or even infiltrate the queen’s court could help scientists influence the health of a colony.

Dec 6, 2022

Surprising Finding: New Study Yields Clues to Genetic Causes of High Cholesterol

Posted by in categories: genetics, health

According to a recent study conducted by geneticists at the University of Pittsburgh School of Public Health in collaboration with several other organizations, including the University of Otago and the Samoan health research community, the discovery of a genetic variant that is relatively common among individuals of Polynesian descent but very rare in most other populations is providing clues to the genetic underpinnings of high cholesterol in all people.

Dec 6, 2022

A gastroenterologist shares 2 diet rules she follows for a healthy gut and to prevent colon cancer

Posted by in categories: biotech/medical, health

With all the factors that may impact gut health, it can be hard to know what’s causing stomach troubles and potentially affecting long-term wellness.

In a recent TikTok video via Houston Methodist hospital system, gastroenterologist Dr. Neeharika Kalakota shared a few simple rules of thumb she follows to maintain a healthy gut.

As an expert on digestive health, Kalakota said she recommends that her patients stay up-to-date on colon cancer screenings and avoid colonic “cleanses,” which can wreak havoc on the bowel and rectum.

Dec 6, 2022

Chip lets scientists study biocement formation in real-time

Posted by in categories: biotech/medical, computing, engineering, health

Scientists from EPFL and the University of Lausanne have used a chip that was originally designed for environmental science to study the properties of biocement formation. This material has the potential to replace traditional cement binders in certain civil engineering applications.

The chip is the size of a credit card and its surface is engraved with a flow channel measuring one meter from end to end that is as thick as a human hair. Researchers can inject a solution into one end of the channel and, with the help of time-lapse microscopy, observe the solution’s behavior over several hours. Medical scientists have used similar chips for health care applications, such as to examine how arteries get clogged or how a drug spreads into the bloodstream, while environmental engineers have applied them to the study of biofilms and contaminants in drinking water.

Now, a team of civil engineers at EPFL’s Laboratory of Soil Mechanics (LMS), together with scientists from the Faculty of Geosciences and Environment at the University of Lausanne (UNIL), have repurposed the chip to understand complex transport-reaction phenomena involved in the formation of new kinds of biocement.