Menu

Blog

Archive for the ‘information science’ category: Page 302

May 17, 2016

Theorists smooth the way to modeling quantum friction

Posted by in categories: chemistry, computing, information science, particle physics, quantum physics

Theoretical chemists at Princeton University have pioneered a strategy for modeling quantum friction, or how a particle’s environment drags on it, a vexing problem in quantum mechanics since the birth of the field. The study was published in the Journal of Physical Chemistry Letters (“Wigner–Lindblad Equations for Quantum Friction”). “It was truly a most challenging research project in terms of technical details and the need to draw upon new ideas,” said Denys Bondar, a research scholar in the Rabitz lab and corresponding author on the work.

Researchers construct a quantum counterpart of classical friction, a velocity-dependent force acting against the direction of motion

Researchers construct a quantum counterpart of classical friction, a velocity-dependent force acting against the direction of motion. In particular, a translationary invariant Lindblad equation is derived satisfying the appropriate dynamical relations for the coordinate and momentum (i.e., the Ehrenfest equations). Numerical simulations establish that the model approximately equilibrates. (© ACS)

Continue reading “Theorists smooth the way to modeling quantum friction” »

May 14, 2016

Google a step closer to developing machines with human-like intelligence

Posted by in categories: computing, information science, neuroscience, robotics/AI

An algorithm developed by Google is designed to encode thought, which could lead to computers with ‘common sense’ within a decade, says leading AI scientist.

Read more

May 12, 2016

Recommendation Engines Yielding Stronger Predictions into Our Wants and Needs

Posted by in categories: computing, disruptive technology, economics, information science, innovation, internet, machine learning, software

If you’ve ever seen a “recommended item” on eBay or Amazon that was just what you were looking for (or maybe didn’t know you were looking for), it’s likely the suggestion was powered by a recommendation engine. In a recent interview, Co-founder of machine learning startup Delvv, Inc., Raefer Gabriel, said these applications for recommendation engines and collaborative filtering algorithms are just the beginning of a powerful and broad-reaching technology.

Raefer Gabriel, Delvv, Inc.

Raefer Gabriel, Delvv, Inc.

Gabriel noted that content discovery on services like Netflix, Pandora, and Spotify are most familiar to people because of the way they seem to “speak” to one’s preferences in movies, games, and music. Their relatively narrow focus of entertainment is a common thread that has made them successful as constrained domains. The challenge lies in developing recommendation engines for unbounded domains, like the internet, where there is more or less unlimited information.

“Some of the more unbounded domains, like web content, have struggled a little bit more to make good use of the technology that’s out there. Because there is so much unbounded information, it is hard to represent well, and to match well with other kinds of things people are considering,” Gabriel said. “Most of the collaborative filtering algorithms are built around some kind of matrix factorization technique and they definitely tend to work better if you bound the domain.”

Continue reading “Recommendation Engines Yielding Stronger Predictions into Our Wants and Needs” »

May 11, 2016

This Robot’s Teaching Itself to Twirl a Stick

Posted by in categories: information science, robotics/AI

If you’ve ever tried to learn how to spin a pencil in your hand, you’ll know it takes some concerted effort—but it’s even harder for a robot. Now, though, researchers have finally built a ‘bot that can learn to do it.

The reason that tasks like spinning a stick are hard is that a lot happens in a very short time. As the stick moves, the forces exerted by the hand can easily send it flying out of control if they’re not perfectly co-ordinated. Sensing where the stick is and varying the hand’s motion is an awful lot for even the smartest algorithms to handle based on a list of rules.

Continue reading “This Robot’s Teaching Itself to Twirl a Stick” »

May 10, 2016

CoinFac Brings Quantum Computing Technology To Cryptocurrency Mining

Posted by in categories: bitcoin, cryptocurrencies, economics, information science, quantum physics, supercomputing

QC meets Blockchaining; nice.


CoinFac Limited, a technology company, has recently introduced the next generation quantum computing technology into cryptocurrency mining, allowing current Bitcoin and Altcoin miners to enjoy a 4,000 times speed increase.

Quantum computing is being perceived as the next generation of supercomputers capable of processing dense digital information and generating multi-sequential algorithmic solutions 100,000 times faster than conventional computers. With each quantum computing server costing at an exorbitant price tag of $5 Million — $10 Million, this revolutionary concoction comprising advanced technological servers with a new wave of currency systems, brings about the most uprising event in the cryptocurrency ecosystem.

Continue reading “CoinFac Brings Quantum Computing Technology To Cryptocurrency Mining” »

May 6, 2016

Teaching computers to understand human languages

Posted by in categories: computing, education, information science

Researchers at the University of Liverpool have developed a set of algorithms that will help teach computers to process and understand human languages.

Whilst mastering is easy for humans, it is something that computers have not yet been able to achieve. Humans understand language through a variety of ways for example this might be through looking up it in a dictionary, or by associating it with words in the same sentence in a meaningful way.

The algorithms will enable a to act in much the same way as a human would when encountered with an unknown word. When the computer encounters a word it doesn’t recognise or understand, the algorithms mean it will look up the word in a dictionary (such as the WordNet), and tries to guess what other words should appear with this unknown word in the text.

Read more

May 4, 2016

Research Quantum Experience

Posted by in categories: computing, information science, quantum physics

Have you registered?

Read more

May 4, 2016

IBM’s Quantum Experience brings quantum computing to the masses via the cloud

Posted by in categories: computing, information science, quantum physics

Hmmm; my verdict is out for now because I haven’t seen anything showing me that IBM is a real player in this space.


IBM is bringing quantum computing to a device near you by delivering its IBM Quantum Experience through the IBM Cloud. The platform is part of IBM’s Research Frontiers Institute and could be a data scientist’s newest tool and a data junkie’s dream come true.

The platform is available on any desktop or mobile device. The tech allows users to “run algorithms and experiments on IBM’s quantum processor, work with the individual quantum bits (qubits), and explore tutorials and simulations around what might be possible with quantum computing,” the press release noted.

Continue reading “IBM’s Quantum Experience brings quantum computing to the masses via the cloud” »

May 1, 2016

Probability we’re the only intelligent life ever? Really low, say astronomers

Posted by in categories: alien life, information science

A new paper shows that the recent discoveries of exoplanets, plus a revised Drake’s equation, produces a new, empirically valid probability of whether any other advanced civilizations have ever existed.

Read more

May 1, 2016

Optical Processing Pioneer wins Project with DARPA

Posted by in categories: computing, engineering, information science, mathematics

https://youtube.com/watch?v=EyOuVFQNMLI

Cambridge University spin-out Optalysys has been awarded a $350k grant for a 13-month project from the US Defense Advanced Research Projects Agency (DARPA). The project will see the company advance their research in developing and applying their optical co-processing technology to solving complex mathematical equations. These equations are relevant to large-scale scientific and engineering simulations such as weather prediction and aerodynamics.

The Optalysys technology is extremely energy efficient, using light rather than electricity to perform intensive mathematical calculations. The company aims to provide existing computer systems with massively boosted processing capabilities, with the aim to eventually reach exaFLOP rates (a billion billion calculations per second). The technology operates at a fraction of the energy cost of conventional high-performance computers (HPCs) and has the potential to operate at orders of magnitude faster.

Continue reading “Optical Processing Pioneer wins Project with DARPA” »