Toggle light / dark theme

Dr. Marina Ezcurra, Ph.D. — Exploring The Gut Microbiota-Brain Axis In Health, Disease, and Aging

Exploring The Gut Microbiota-Brain Axis In Health, Disease, and Aging — Dr. Marina Ezcurra, Ph.D. University of Kent.


Dr. Marina Ezcurra (https://marinaezcurralab.com/) is a Lecturer in the Biology of Aging, and NeuroBiology, at the School of BioSciences, at the University of Kent, UK (https://www.kent.ac.uk/biosciences/people/2081/ezcurra-marina).

Dr. Ezcurra received her PhD from the Karolinska Institute in 2011. Her PhD research was a collaborative project between Karolinska and the Medical Research Council Laboratory of Molecular Biology at Cambridge, where she studied neural circuits and behavior using C. elegans in the lab of Dr. Bill Schafer.

During her PhD, Dr. Ezcurra identified extra-synaptic mechanisms by which nutritional status modulates nociception, involving neuro-peptidergic and dopaminergic signaling. She went on to do a postdoc working on aging with Dr. David Gems at University College London.

During her postdoc, Dr. Ezcurra developed methods to monitor the development of multiple age-related diseases in-vivo in C. elegans, leading to the discovery of a previously unknown process, Intestinal Biomass Conversion. This mechanism enables the C. elegans intestine to be broken down to produce vast amounts of yolk, resulting in poly-morbidity and mortality in aging nematodes. This work illustrates how aging and age-related diseases can be the result of run-on of wild-type gene function, rather than stochastic molecular damage.

Gene self-correction in ‘chromosome caps’ can beat mutations, help prevent blood cancers

Mentions telomeres.

~~~


People with rare disorders that cause shortened telomeres—protective caps that sit at the end of chromosomes—may be more likely to have blood cancers such as leukemia or myelodyplastic syndrome. Now, Johns Hopkins Medicine scientists have discovered several “self-correcting” genetic mutations in bone marrow that may protect such patients from these cancers.

In a study published online August 3 2021, in the Journal of Clinical Investigation, the researchers also suggest these mutations can serve as biomarkers that may indicate if patients with short telomere syndromes are likely to develop blood cancers.

“These are the most common cancers we see in patients with short telomere syndromes,” says Mary Armanios, M.D., director of the Telomere Center and professor of oncology at the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins. “We know that at a certain point, the cells of patients with shortened either become cancerous or stay healthy.”

The Evolution of Mammals Reveals 2,000 New Genes Key to Longevity in Humans

Summary: Researchers have identified 2,000 genes in humans linked to longevity. The genes are associated with biological mechanisms that drive the prolongation of life in mammals, including DNA repair, coagulation, and immune response.

Source: UPF Barcelona.

What determines the life expectancy of each species? This is a fundamental and highly complex question that has intrigued the field of research throughout history. From the evolutionary point of view, the major cause of these differences between species lies in their ecological adaptations. For example, life expectancy is longer in species adapted to living in trees, underground, or with large body mass, since all these adaptations reduce mortality by predation.

Partial reprogramming, a brief history

Youthereum talking about rejuvenation, funding, there is a history lesson here but the modern look starts at 38:01.


My overview of the history of partial reprogramming — a novel approach to epigenetic rejuvenation that uses short bursts of Yamanaka factors expression to periodically roll back the epigenetic state of cells to a younger pattern.

New Cultured Meat Factory Will Churn Out 5,000 Bioreactor Burgers a Day

“After demonstrating that cultured meat can reach cost parity faster than the market anticipated, this production facility is the real game-changer,” said Yaakov Nahmias, Future Meat Technologies founder and chief scientific officer, in a press release. “This facility demonstrates our proprietary media rejuvenation technology in scale, allowing us to reach production densities 10-times higher than the industrial standard.”

Cultured meat is made by extracting cells from animal tissue and giving them nutrients, oxygen, and moisture while keeping them at the same temperature they’d be at inside an animal’s body. The cells divide and multiply then start to mature, with muscle cells joining to create muscle fibers and fat cells producing lipids. The resulting nuggets of meat can be used to make processed products like burgers or sausages. Structured cuts of meat with blood vessels and connective tissue, like steak or chicken breast, require scaffolds, and researchers are creating these with biomaterials, like cellulose from plants. Companies are working on several varieties of more elaborate cultured products, from bacon to salmon.

As reported by Bloomberg, Future Meat aims to start offering its products in US restaurants by the end of next year—but must get approval from the FDA first. On top of that approval, public opinion is another hurdle the company and its competitors will need to clear before they see widespread success; for every person who’s opposed to factory farming, there’s a person who’s squeamish about the idea of meat grown in a bioreactor, despite the avian (or bovine, or porcine) lives being spared. Getting these consumers to view cultured meat favorably will be a matter of education, taste/texture as compared to the ‘real thing,’ and cost competitiveness.

Jeff Bezos funds anti-ageing technology to help humans ‘live forever’

Thanks Jeff


Jeff Bezos, the world richest man is investing in anti-ageing technology that could extend the average human lifespan by up to 50 years, WITHIN NIGERIA learnt.

It was also learnt that Jeff Bezos is one of the several billionaire investors in Altos Labs, a Silicon Valley tech firm working on experimental – and potentially dangerous – new life extension technologies.

The new company has hired dozens of experts from top universities to research how cells age and how to reverse that process.

David Sinclair on advances in the Longevity field during recent years (con S/T en Español)

This is an excerpt I made from a conversation between Sergey Young and David Sinclair. Along it, they share their impressions as to how much Longevity science have progressed during the last few years.

The link to the entire conversation and the Q&As from the audience that was watching the webinar is in the description of the video.

𝗛𝗲 𝗮𝗴𝗿𝗲𝗴𝗮𝗱𝗼 𝘀𝘂𝗯𝘁𝗶́𝘁𝘂𝗹𝗼𝘀 𝗲𝗻 𝗘𝘀𝗽𝗮𝗻̃𝗼𝗹 🙂


Excerpt from an interview made by Sergey Young to David Sinclair on may 29 2021.

To watch the entire interview clic here: https://youtu.be/JCnXRJsgnlI

Announcing the in-person book launch of “The Illusion of Knowledge: The paradigm shift in aging research that shows the way to human rejuvenation” with the presence of the author

Dr. The book launch will happen on September 4th, at 3 p.m. (Pacific Time) in Book Passage Ferry Building Store in San Francisco, California!
Please come to have an in-person chat with Dr. Katcher.

Dr. Harold Katcher is one of the discoverers of the human breast cancer gene (BRCA1), and has thousands of citations in the scientific literature, with publications ranging from protein structure to bacteriology, biotechnology, bioinformatics and biochemistry. He was the Academic Director for Natural Sciences for the Asian Division of the University of Maryland Global Campus, and nowadays is Chief Scientific Officer at Yuvan Research Inc., which is working on the development of rejuvenation treatments.

https://www.bookpassage.com/event/harold-katcher-illusion-kn…ding-store.
https://www.ntzplural.com/harold-katcher-launches-book.
https://www.facebook.com/events/553354852782737?ref=newsfeed.

#haroldkatcher #sanfrancisco #california #booklaunch #biotechnology #rejuvenation #aging.

Created with the voices from LOVO @ www.lovo.ai.