Menu

Blog

Archive for the ‘life extension’ category: Page 72

Nov 7, 2023

Researchers solve protein mystery

Posted by in categories: biotech/medical, chemistry, life extension

Researchers have uncovered that proteins use a common chemical label as a shield to protect them from degradation, which in turn affects motility and aging. Proteins are key to all processes in our cells and understanding their functions and regulation is of major importance.

“For many years, we have known that nearly all human proteins are modified by a specific chemical group, but its functional impact has remained undefined,” says professor Thomas Arnesen at the Department of Biomedicine, University of Bergen.

Nov 6, 2023

An immune molecule that regulates aging and a living organism’s lifespan

Posted by in categories: biological, life extension

Aging is a natural process that affects all living organisms, prompting gradual changes in their behavior and abilities. Past studies have highlighted several physiological factors that can contribute to aging, including the body’s immune responses, an imbalance between the production of reactive oxygen (i.e., free radicals) and antioxidants, and sleep disturbances.

While the link between aging and these different factors is well-document, the connection between them is still poorly understood. Researchers at Washington University in St. Louis recently identified an immune molecule that could play a key role in modulating the process of aging and the duration living organism’s lifespan.

Their paper, published in Neuron, was inspired by two independent research efforts at the university.

Nov 6, 2023

Cell Death Switch Activates Cancer Death

Posted by in categories: biotech/medical, chemistry, life extension

Scientists from the University of California Davis (UC Davis) Comprehensive Cancer Center have recently published in Cell Death and Disease, identifying a critical protein that causes cells to die. The protein is described as an epitope, which is a section of the protein that is recognized by the immune system to activate a response. This epitope was distinctly found on the CD95 receptor, known to trigger programmed cell death. The report demonstrates a new mechanism to trigger cell death and provide further insight into improved disease treatments.

CD95 receptors, also referred to a “Fas”, are cell death receptors which are present on cell membranes. Once Fas is activated, it generates a signaling cascade which elicits cell death. The mechanism by which cells self-destruct has been an important research topic. By understanding cell death, scientists can generate better therapies for different diseases, including cancer.

Currently, cancer is treated by surgery, chemotherapy, or radiotherapy. Despite initial success, these treatments are unable to fully eradicate tumor cells. Immunotherapy is a new approach to target cancer. Immunotherapy refers to therapeutics modulating the immune system to elicit an effective immune response. This is a more indirect approach compared to lysing tumors with a chemical. One specific immunotherapy referred to as chimeric antigen receptor (CAR) T-cell therapy is a treatment in which T cells, or cytotoxic immune cells, are engineered to lyse tumor cells. Unfortunately, CAR T-cell therapy is limited due to the tumor’s ability to prevent T cell activation.

Nov 6, 2023

Biological age diagnostics

Posted by in categories: biotech/medical, life extension

Two people born on the same day can age very differently.

Biological age diagnostics help pinpoint the rate a person ages regardless of the amount of time they have spent on earth. This could provide earlier detection of disease for personalised preventative strategies.


Our FREE comprehensive market intelligence report demonstrates how biological age diagnostics are radically transforming how we see and tackle aging.

Nov 6, 2023

New treatment reverses epigenetic age of rats by 67.4%

Posted by in categories: biotech/medical, genetics, life extension

Equivalent to an 80-year-old human reverting to the age of 26.


A groundbreaking study into anti-aging has reported significant rejuvenation effects using exosomes, tiny particles which can be extracted from biological fluids such as blood plasma.

Old and young rat. Image generated by DALL·E 3

Continue reading “New treatment reverses epigenetic age of rats by 67.4%” »

Nov 5, 2023

NASA open to keeping ISS beyond 2030 if no viable replacements

Posted by in categories: futurism, life extension

NASA official says the ISS may not be retired in 2030 if commercial space stations are not ready.

NASA has hinted that it may extend the life of the International Space Station (ISS) beyond 2030 if there are no viable alternatives in the form of commercial space stations.

As per SpaceNews, Ken Bowersox, NASA associate administrator for space operations, said at the Beyond Earth Symposium on November 2 that the agency was flexible about the future of the ISS and would only retire it once there were new platforms to replace it.

Nov 5, 2023

NMN Ban? No Problem, Low Dose Niacin (60 mg/d) Increases NAD

Posted by in categories: biotech/medical, genetics, life extension

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Continue reading “NMN Ban? No Problem, Low Dose Niacin (60 mg/d) Increases NAD” »

Nov 3, 2023

Running Large-Scale CRISPR Screens in Human Neurons

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Identifying therapeutic targets for neurodegenerative conditions is often challenging due to the limited accessibility of reproducible, scalable in vitro cell models. Genome-level CRISPR screens are useful for these studies but performing screens that include the necessary replicates requires billions of cells. Human iPSC-derived cells can provide the needed scale, however, the complex process of directed differentiation is time-consuming, resource-intensive, and rarely feasible. Furthermore, delivering ribonucleases by transfection or transduction is inefficient in human iPSC-derived cells, especially delicate cell types like neurons. As a result, scientists often rely on immortalized cell lines, which do not accurately represent human biology or disease states, to run large-scale CRISPR screens.

In this GEN webinar, two experts will discuss solutions for running large-scale CRISPR screens to identify therapeutic targets for neurodegenerative diseases. They will present ioCRISPR-Ready Cells™: human iPSC-derived cells precision reprogrammed with opti-ox™, that constitutively express Cas9 nuclease, which are built for rapidly generating gene knockouts and CRISPR screens. During the webinar, you’ll learn about two peer-reviewed studies that performed large scale CRISPR knockout screens using opti-ox powered glutamatergic neurons with stable Cas9 expression. The first study demonstrates a loss-of-function genetic screen using a human druggable genome library. The second study investigated possible regulators of the RNA binding motif 3 protein, whose enhanced expression is highly neuroprotective both in vitro and in vivo.

Nov 3, 2023

When will we upload our consciousness to the cloud?

Posted by in categories: biotech/medical, computing, life extension, neuroscience

As long as people have been alive, they’ve wanted to stay alive. For centuries, explorers have searched for the fountain of youth. And today, scientists are hard at work researching technology that can extend the human lifespan, stop or reverse aging; and even preserve a terminally ill person indefinitely, until a cure for their disease is discovered. But what if — instead of preserving our *bodies* — we could preserve our *consciousness*; by uploading it to a powerful computer. This is called *mind uploading*. And one startup has developed a procedure to do exactly this. It’s scientifically sound, there’s a waiting list to participate, and the procedure — is one hundred percent fatal. Let’s find out why.〰
🙏 SUPPORT THE WHY FILES
🙏 https://www.patreon.com/thewhyfiles (Fun, Free Perks!)👽 BUY WHY FILES MERCH
👽 https://shop.thewhyfiles.com (Code: LIZZIDPEEPLE for 10% off first order)💬 CHAT WITH US ON DISCORD
💬 https://thewhyfiles.com/discord〰
🌐 OFFICIAL WEB SITE: https://thewhyfiles.com🕵️ Submit a topic, suggestion or just say hi:
🕵️ https://thewhyfiles.com/tips🎨 Have a product suggestion or want to design artwork for TWF?
🎨 https://thewhyfiles.com/merch📸 BE A WHY FILES MODEL (and get free stuff!)
📸 Send a photo of you/family/friends watching TWF.
📸 wearing TWF gear, using TWF merchandise:
📸 https://thewhyfiles.com/wild〰
🎧 THE PODCAST VERSION
🎧 https://thewhyfiles.com/podcast〰
⁍ TWF on SOCIAL (in order of importance)
https://www.reddit.com/r/TheWhyFiles/
https://twitter.com/OMGTheWhyFiles.
https://www.instagram.com/OMGTheWhyFiles.
https://www.tiktok.com/@thewhyfiles.
https://www.facebook.com/OMGTheWhyFiles〰
🐠 BETTER CHANNELS TO WATCH:
🐠 https://www.youtube.com/c/HecklefishMoriarty.
🤓 https://www.youtube.com/c/TheWhyFilesBackstage.
#science #future #technology

Nov 2, 2023

Mechanism That Forms Connections in the Brain Identified

Posted by in categories: chemistry, life extension, neuroscience

How are synapses formed, those points of contact that allow the transmission of information from one neuron to the other? Working with an international team, researchers from the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) have now uncovered a crucial mechanism and elucidated the identity of the axonal transport vesicles that generates synapses. The findings provide an important basis for promoting the regeneration of nerve cells and counteracting the aging process in the future. The results have just been published in the journal Science.

Whether in the brain or in the muscles, wherever there are nerve cells, there are synapses. These contact points between neurons form the basis for the transmission of excitation, i.e. communication between neurons. As in any communication process, there is a sender and a receiver: Nerve cell processes called axons generate and transmit electrical signals thereby acting as signal senders. Synapses are points of contact between axonal nerve terminals (the pre-synapse) and post-synaptic neurons. At these synapses, the electrical impulse is converted into chemical messengers that are received and sensed by the post-synapses of the neighboring neuron. The messengers are released from special membrane sacs called synaptic vesicles.

Page 72 of 641First6970717273747576Last