Toggle light / dark theme

The Israeli government has teamed up with a defense contractor to invent a new material matrix that can hide soldiers from infrared sensors, making them more difficult to detect.

Polaris Defense’s Kit 300 system is a “thermal visual concealment” system that uses a combination of “metals, microfibres, and polymers” to mask a soldier’s thermal signature, according to Business Insider.

Thermal imaging technology creates a visual representation of an object via the invisible infrared (“heat radiation”) the object emits. If that object radiates heat, a thermal imager will show an image of it, with different colors representing relative levels of heat.

For something that emits no light that we can detect, black holes just love to cloak themselves in radiance.

Some of the brightest light in the Universe comes from supermassive black holes, in fact. Well, not actually the black holes themselves; it’s the material around them as they actively slurp down vast amounts of matter from their immediate surroundings.

Among the brightest of these maelstroms of swirling hot material are galaxies known as blazars. Not only do they glow with the heat of a swirling coat, but they also channel material into ‘blazing’ beams that zoom through the cosmos, shedding electromagnetic radiation at energies that are hard to fathom.

A recent study, affiliated with South Korea’s Ulsan National Institute of Science and Technology (UNIST) has reported a scalable synthetic strategy to fabricate low-resistance edge contacts to atomic transistors using a thermally stable 2D metal, namely PtTe2.

Developing cheaper, smaller, and better-performing semiconductors with other than (Si), is expected to gain , thanks to a recent study from UNIST. This will aid in reducing the space between semiconductors and metals within to ∼1 nm, which could help maintain .

Published in the August 2022 issue of Nature Communications, this study has been jointly led by Professor Soon-Yong Kwon and Professor Zonghoon Lee in the Department of Materials Science and Engineering at UNIST.

The new type of home could address housing shortages.

On Monday, the University of Maine Advanced Structures and Composites Center (ASCC) unveiled the first 3D-printed house made entirely out of bio-based materials called BioHome3D, according to a press release by the institution.


Fully recyclable and highly insulated

The new structure consists of a 600-square-foot prototype featuring 3D-printed floors and walls as well as a roof made of wood fibers and bio-resins. The house is fully recyclable and highly insulated and its development produced a limited amount of waste due to the precision of the printing process.

A team of scientists led by crystallographers from St Petersburg University has succeeded in synthesizing an analog of the Earth’s most structurally complex mineral, ewingite, in a laboratory. The findings of the research are published in Materials.

Ewingite is a that was discovered in the mid-2010s in the abandoned Plavno uranium mine located in the Czech Republic. It is the most complex mineral known to exist on Earth. Moreover, because of the specific thermodynamic conditions required for its formation, the mineral is considered to be very rare.

The researchers managed to synthesize an analog with a composition and crystal structure similar to that of natural ewingite through a combination of low-temperature hydrothermal synthesis and room-temperature evaporation.

Tiny magnetic whirlpools could transform memory storage in high performance computers.

Magnets generate invisible fields that attract certain materials. A common example is refrigerator magnets. Far more important to our everyday lives, magnets also can store data in computers. Exploiting the direction of the magnetic field (say, up or down), microscopic bar magnets each can store one bit of memory as a zero or a one—the language of computers.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory want to replace the bar magnets with tiny magnetic vortices. As tiny as billionths of a meter, these vortices are called skyrmions, which form in certain . They could one day usher in a new generation of microelectronics for memory storage in .

This is the first time scientists have observed vessels form with such a close resemblance to the complicated structure of naturally occurring blood vessels.

An international research collaboration headed by the University of Sydney has created technology that allows for the production of materials that mirror the structure of living blood vessels, with major implications for the future of surgery.

Preclinical research showed that once the manufactured blood vessel was transplanted into mice, the body accepted it and new cells and tissue began to develop in the appropriate locations, thereby converting it into a “living blood vessel.”