Menu

Blog

Archive for the ‘materials’ category: Page 199

Aug 12, 2020

Indonesia’s Mount Sinabung volcano erupts twice in three days

Posted by in category: materials

MEDAN, Indonesia — Indonesia’s rumbling Mount Sinabung erupted Monday, sending a column of volcanic materials as high as 16,400 feet into the sky and depositing ash on villages.

It is the second eruption since Saturday after the volcano sat dormant for more than a year.

Falling grit and ash accumulated up to 2 inches in already abandoned villages on the volcano’s slopes, said Armen Putra, an official at the Sinabung monitoring post on Sumatra Island.

Aug 12, 2020

Storing energy in red bricks

Posted by in categories: energy, materials

Imagine plugging in to your brick house.

Red bricks—some of the world’s cheapest and most familiar building materials—can be converted into storage units that can be charged to hold electricity, like a battery, according to new research from Washington University in St. Louis.

Continue reading “Storing energy in red bricks” »

Aug 12, 2020

Physicists accelerate the hunt for revolutionary artificial atomic materials

Posted by in categories: materials, particle physics

Scientists at the University of Bath have taken an important step towards understanding the interaction between layers of atomically thin materials arranged in stacks. They hope their research will speed up the discovery of new, artificial materials, leading to the design of electronic components that are far tinier and more efficient than anything known today.

Smaller is always better in the world of electronic circuitry, but there’s a limit to how far you can shrink a silicon component without it overheating and falling apart, and we’re close to reaching it. The researchers are investigating a group of atomically thin materials that can be assembled into stacks. The properties of any final material depend both on the choice of raw materials and on the angle at which one layer is arranged on top of another.

Dr. Marcin Mucha-Kruczynski who led the research from the Department of Physics, said: “We’ve found a way to determine how strongly atoms in different layers of a stack are coupled to each other, and we’ve demonstrated the application of our idea to a structure made of .”

Aug 11, 2020

Discovery of massless electrons in phase-change materials provides next step for future electronics

Posted by in categories: chemistry, materials

Researchers have found electrons that behave as if they have no mass, called Dirac electrons, in a compound used in rewritable discs, such as CDs and DVDs. The discovery of ‘massless’ electrons in this phase-change material could lead to faster electronic devices.

The international team published their results on July 6 in ACS Nano, a journal of the American Chemical Society.

The compound, GeSb2Te4, is a phase-change material, meaning its atomic shifts from amorphous to crystalline under heat. Each structure has individual properties and is reversible, making the compound an ideal material to use in electronic devices where information can be written and rewritten several times.

Aug 9, 2020

Unusual Sound Waves Induced Using Laser Pulses – 140 Years After Alexander Graham Bell Reported That Light Can Be Converted Into Sound Waves

Posted by in categories: materials, physics

Ultrashort laser pulses induce unusual sound waves via a structural instability in a material.

RIKEN physicists have initiated unusual sound waves in a flake using ultrashort pulses of laser light and then created videos of their movement using electron microscopy. This advance should help engineers to achieve higher precision control of heat flow and sound in nanodevices using light.

Aug 8, 2020

Electric and magnetic domains inverted by a magnetic field

Posted by in category: materials

Certain materials contain both electric dipoles and magnetic moments. An experiment demonstrates that these properties can be coupled in previously unrecognized ways, leading to advanced functionality. Domain patterns inverted by a uniform magnetic field.

Aug 6, 2020

Uncovering our solar system’s shape

Posted by in categories: materials, space

Scientists have developed a new prediction of the shape of the bubble surrounding our solar system using a model developed with data from NASA missions.

All the planets of our are encased in a magnetic bubble, carved out in space by the Sun’s constantly outflowing material, the . Outside this bubble is the interstellar medium—the ionized gas and magnetic field that fills the space between stellar systems in our galaxy. One question scientists have tried to answer for years is on the shape of this bubble, which travels through space as our Sun orbits the center of our galaxy. Traditionally, scientists have thought of the as a comet shape, with a rounded leading edge, called the nose, and a long tail trailing behind.

Research published in Nature Astronomy in March and featured on the journal’s cover for July provides an alternative shape that lacks this long tail: the deflated croissant.

Aug 4, 2020

NASA’s Perseverance Rover Will Carry First Spacesuit Materials to Mars

Posted by in categories: materials, space

In a Q&A, spacesuit designer Amy Ross explains how five samples, including a piece of helmet visor, will be tested aboard the rover, which is targeting a July 30 launch.

NASA is preparing to send the first woman and next man to the Moon, part of a larger strategy to send the first astronauts to the surface of Mars. But before they get there, they’ll be faced with a critical question: What should they wear on Mars, where the thin atmosphere allows more radiation from the Sun and cosmic rays to reach the ground?

Amy Ross is looking for answers. An advanced spacesuit designer at NASA’s Johnson Space Center in Houston, she’s developing new suits for the Moon and Mars. So Ross is eagerly awaiting this summer’s launch of the Perseverance Mars rover, which will carry the first samples of spacesuit material ever sent to the Red Planet.

Aug 4, 2020

Lucy mission one step closer to the Trojan asteroids

Posted by in categories: biotech/medical, materials

NASA’s Lucy mission, led by Southwest Research Institute (SwRI), has achieved an important milestone by passing its System Integration Review and clearing the way for spacecraft assembly. This NASA Discovery Program class mission will be the first to explore Jupiter’s Trojan asteroids, ancient small bodies that share an orbit with Jupiter and hold important insights to understanding the early solar system.

The Lucy spacecraft, during its nominal 12-year mission, will fly by and collect data from seven of these primitive worlds, plus a main belt asteroid. Because the Trojan asteroids are remnants of the primordial material that formed the outer planets, they hold vital clues to deciphering the history of the solar system. Lucy, like the human fossil for which it is named, will revolutionize the understanding of our origins.

Over the last few months, the Lucy team has focused on building and testing all the components of the spacecraft, including the , electronics, communications and navigation systems while observing all appropriate pandemic protocols. At this review, the Lucy team demonstrated to an independent senior review board, including NASA and external experts, that the systems and subsystems are on schedule to proceed to assembly, testing and integration.

Aug 3, 2020

Self-healing fabric

Posted by in category: materials

Self-healing materials are so widespread that clothes lines and tech companies are already applying them to different products.

Now, a research team at the University of California, Riverside, has developed a new type of self-healing material that is conductive of electricity, highly elastic and almost entirely transparent. The lead researcher has revealed that he drew inspiration from Marvel’s Wolverine character.

Continue reading “Self-healing fabric” »