Toggle light / dark theme

Surface Bubbles Could Have Evolved into Earth’s First Cells

(Inside Science) – Primitive “protocells” like those that evolved into the first living cells can form in bubbles on mineral surfaces that were plentiful on the early Earth, according to new research.

The researchers created artificial protocells that they believe may be similar to the protocells that may have formed on Earth about 3.8 billion years ago. The artificial protocells can absorb other small molecules by forming a barrier membrane around them — behavior that is strikingly like that of modern living cells when they absorb cellular fuel and other essential materials while blocking off harmful substances.

And the artificial protocells also exhibit a primitive form of “division,” where the outer membrane of a protocell ruptures and leaves behind several “daughter” protocells with the same capabilities.

Bulldozer-resistant tough Lego bricks made from 90% plastic trash

The brick looks like concrete but avoids typical issues like water absorption and cracking.


Newly-introduced Lego-like bricks may make the construction process easier than ever.

A Canada-based sustainable startup, PLAEX Building Systems Inc., has created recycled plastic bricks. Named “Plaex-crete,” these blocks are lightweight, durable, and eco-friendly.

Plaex was founded by Dustin Bowers, and means PL-astic, A-ggregate, and EX-truder.

Physicists coax molecules into exotic quantum state — ending decades-long quest

The results are “fantastic”, says Yan. They will “really inspire and stimulate the rest of the cold-molecules community”

Exotic phases

Molecular Bose–Einstein condensates could be used in myriad ways. One possibility, says Valtolina, is to create exotic supersolid phases, in which a rigid material flows without resistance. So far this has been achieved only in atomic gases with magnetic interactions — it could now be done in polar molecules, whose interactions are “way stronger”, he says.

Cambridge Scientists Achieve Long-Sought Quantum State Stability in New 2D Material

Scientists at the Cavendish Laboratory have discovered spin coherence in Hexagonal Boron Nitride (hBN) under normal conditions, offering new prospects for quantum technology applications.

Cavendish Laboratory researchers have discovered that a single ‘atomic defect’ in a material known as Hexagonal Boron Nitride (hBN) maintains spin coherence at room temperature and can be manipulated using light.

Spin coherence refers to an electronic spin being capable of retaining quantum information over time. The discovery is significant because materials that can host quantum properties under ambient conditions are quite rare.

Superconductivity: the search and the scandal

Recent high profile controversies haven’t deterred scientists from searching for one of research’s ultimate prizes: room temperature superconductors. Kit Chapman reports on the claims.

In July 2023, the world became obsessed with superconductivity. Two pre-prints from a group in South Korea claimed that a copper-doped lead-apatite, dubbed LK-99 after its two proposers, Lee Sukbae and Kim Ji-Hoon, was a superconductor at room temperature and ambient pressure. The claims spread across social media, with both seasoned groups and amateur chemists trying to recreate the material. By August, a consensus was reached that LK-99 was yet another dead end, and not a superconductor at all.

The news followed a paper in Nature that proposed another room-temperature superconductor, this time only showing its properties at intense pressures, by Ranga Dias at the University of Rochester in the US. Yet Dias’ claims have now been retracted, and his data and academic reputation have been brought into question amid allegations of research fraud and plagiarism.

Novel formamidinium lead iodide perovskite n-type transistors have notable field-effect mobilities

Metal halide perovskites, a class of crystalline materials with remarkable optoelectronic properties, have proven to be promising candidates for the development of cost-effective thin-film transistors. Recent studies have successfully used these materials, particularly tin (Sn) halide perovskites, to fabricate p-type transistors with field-effect hole mobilities (μh) of over 70 cm2 V−1 s−1.

“Counterintuitive” Findings: MIT Scientists Uncover Surprising Metal Behavior Under Extreme Conditions

MIT scientists found that metals like copper can become stronger when heated and impacted at high velocities, challenging traditional views and potentially enhancing materials for extreme environments like space and high-speed manufacturing.

Metals get softer when they are heated, which is how blacksmiths can form iron into complex shapes by heating it red hot. And anyone who compares a copper wire with a steel coat hanger will quickly discern that copper is much more pliable than steel.

But scientists at MIT have discovered that the opposite happens when metal is struck by an object moving at a super high velocity: The hotter the metal, the stronger it is. Under those conditions, which put extreme stress on the metal, copper can actually be just as strong as steel. The new discovery could lead to new approaches to designing materials for extreme environments, such as shields that protect spacecraft or hypersonic aircraft, or equipment for high-speed manufacturing processes.