Menu

Blog

Archive for the ‘materials’ category: Page 98

Jun 11, 2023

Novel ferroelectrics for more efficient microelectronics

Posted by in categories: computing, materials

When we communicate with others over wireless networks, information is sent to data centers where it is collected, stored, processed, and distributed. As computational energy usage continues to grow, it is on pace to potentially become the leading source of energy consumption in this century. Memory and logic are physically separated in most modern computers, and therefore the interaction between these two components is very energy intensive in accessing, manipulating, and re-storing data.

A team of researchers from Carnegie Mellon University and Penn State University is exploring materials that could possibly lead to the integration of the memory directly on top of the transistor. By changing the architecture of the microcircuit, processors could be much more efficient and consume less energy. In addition to creating proximity between these components, the nonvolatile materials studied have the potential to eliminate the need for computer memory systems to be refreshed regularly.

Their recent work published in Science explores materials that are ferroelectric, or have a spontaneous electric polarization that can be reversed by the application of an external electric field. Recently discovered wurtzite ferroelectrics, which are mainly composed of materials that are already incorporated in semiconductor technology for integrated circuits, allow for the integration of new power-efficient devices for applications such as non-volatile memory, electro-optics, and harvesting.

Jun 10, 2023

Liquid Metal Breakthrough Can Transform Everyday Materials Into Electronic “Smart Devices”

Posted by in categories: biological, materials

Chinese scientists have devised a technique to coat everyday materials like paper and plastic with liquid metal, potentially creating “smart devices.” The method, which involves adjusting pressure rather than using a binding material, successfully enables the liquid metal to adhere to surfaces, a previously challenging task due to high surface tension.

Everyday materials such as paper and plastic could be transformed into electronic “smart devices” by using a simple new method to apply liquid metal to surfaces, according to scientists in Beijing, China. The study, published June 9 in the journal Cell Reports.

<em>Cell Reports</em> is a peer-reviewed scientific journal that published research papers that report new biological insight across a broad range of disciplines within the life sciences. Established in 2012, it is the first open access journal published by Cell Press, an imprint of Elsevier.

Jun 10, 2023

AI statue designed by Michelangelo on show in Sweden

Posted by in categories: materials, robotics/AI

A historical dream team of five master sculptors, including Michelangelo, Rodin and Takamura, have trained artificial intelligence (AI) to design a sculpture dubbed “the Impossible Statue”, now on show in a Swedish museum.

“This is a true statue created by five different masters that would never have been able to collaborate in real life,” said Pauliina Lunde, a spokeswoman for Swedish machine engineering group Sandvik that used three AI to create the artwork.

Shaking up traditional conceptions about creativity and art, the stainless steel statue depicts an androgynous person with the lower half of the body covered by a swath of material, holding a bronze globe in one hand.

Jun 8, 2023

Scientists Dropped a New Material That Will Change How We Build Structures

Posted by in category: materials

How do you stay strong and not get rattled? Here’s the answer.

Jun 7, 2023

Physicists discover an exotic material made of bosons

Posted by in categories: materials, particle physics

Take a lattice—a flat section of a grid of uniform cells, like a window screen or a honeycomb—and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it’s between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where UC Santa Barbara physicists found some interesting material behaviors.

“We discovered a new state of matter—a bosonic correlated insulator,” said Richen Xiong, a graduate student researcher in the group of UCSB condensed matter physicist Chenhao Jin, and the lead author of a paper that appears in the journal Science.

According to Xiong, Jin and collaborators from UCSB, Arizona State University and the National Institute for Materials Science in Japan, this is the first time such a material—a highly ordered crystal of bosonic particles called excitons—has been created in a “real” (as opposed to synthetic) matter system.

Jun 7, 2023

Buckle up! A new class of materials is here

Posted by in category: materials

Would you rather run into a brick wall or into a mattress? For most people, the choice is not difficult. A brick wall is stiff and does not absorb shocks or vibrations well; a mattress is soft and is a good shock absorber. Sometimes, in designing materials, both of these properties are needed. Materials should be good at absorbing vibrations, but should be stiff enough to not collapse under pressure. A team of researchers from the UvA Institute of Physics has now found a way to design materials that manage to do both these things.

Publishing.

https://onlinelibrary.wiley.com/doi/10.1002/adma.

Jun 6, 2023

Ten future materials that could change the way we build

Posted by in categories: futurism, materials

The race is on to engineer alternatives to traditional building materials that either perform better or tread more lightly on the planet. From super-strong plastics to fungus columns, we’ve rounded up 10 materials that could be the future of construction.

Jun 5, 2023

A Thin Leap Forward: World’s First Functional 2D Microchip

Posted by in categories: computing, materials

😀


The first demonstration of a functional microchip integrating atomically thin two-dimensional materials with exotic properties heralds a new era of microelectronics. The world’s first fully integrated and functional microchip based on exotic two-dimensional materials has been fabricated at KAUST.

Jun 5, 2023

Scientists invent self-healing robot skin that mimics the real thing

Posted by in categories: materials, robotics/AI

The material can self-heal in just 24 hours when warmed to 158°F or in about a week at room temperature.

Stanford professor Zhenan Bao and his team have invented a multi-layer self-healing synthetic electronic skin.

This is according to a report by Fox News published on Friday.

Continue reading “Scientists invent self-healing robot skin that mimics the real thing” »

Jun 4, 2023

‘You can 3D print one material through another, as if it were invisible’: New 3D printing technique

Posted by in categories: 3D printing, materials

Scientists have developed an advanced technique for 3D printing that is set to revolutionize the manufacturing industry.

The group, led by Dr. Jose Marques-Hueso from the Institute of Sensors, Signals & Systems at Heriot-Watt University in Edinburgh, has created a new method of 3D printing that uses near-infrared (NIR) light to create complex structures containing multiple materials and colors.

They achieved this by modifying a well-established 3D known as stereolithography to push the boundaries of multi-material integration. A conventional 3D printer would normally apply a blue or UV laser to a that is then selectively solidified, layer by layer, to build a desired object. But a major drawback of this approach has been the limitations in intermixing materials.