Toggle light / dark theme

Circa 2020


The 7,700 square foot store offers baked goods sourced locally, fresh seasonal produce, meat, seafood and ready-made meals, as well as beer, wine and spirits.

There are no cashiers. To make purchases, shoppers need an Amazon account and the free Amazon Go app from the Apple App Store, Google Play or Amazon Appstore, which they can download onto a recent-generation iPhone or Android phone. They swipe a QR code from the app to enter the store.

Engineers have successfully transferred digitally encoded information wirelessly using nuclear radiation instead of conventional technology.

Radio waves and mobile phone signals relies on for communication but in a new development, engineers from Lancaster University in the UK, working with the Jožef Stefan Institute in Slovenia, transferred digitally encoded information using “fast neutrons” instead.

The researchers measured the spontaneous emission of fast neutrons from californium-252, a radioactive isotope produced in nuclear reactors.

Cracked phone screens could become a thing of the past thanks to breakthrough research conducted at The University of Queensland.

The global team of researchers, led by UQ’s Dr Jingwei Hou, Professor Lianzhou Wang and Professor Vicki Chen, have unlocked the technology to produce next-generation composite glass for lighting LEDs and smartphone, television and computer screens.

The findings will enable the manufacture of glass screens that are not only unbreakable but also deliver crystal clear image quality.

By Jeremy Batterson 11-09-2021

The equivalent of cheap 100-inch binoculars will soon be possible. This memo is a quick update on seven rapidly converging technologies that augur well for astronomy enthusiasts of the near future. All these technologies already exist in either fully developed or nascent form, and all are being rapidly improved due to the gigantic global cell phone market and the retinal projection market that will soon replace it. Listed here are the multiple technologies, after which they are brought together into a single system.

1) Tracking.
2) Single-photon image sensing.
3) Large effective exit pupils via large sensors.
4) Long exposure non-photographic function.
5) Flat optics (metamaterials)
6) Off-axis function of flat optics.
7) Retinal projection.

1) TRACKING: this is already being widely used in so-called “go-to” telescopes, where the instrument will find any object and track it, so Earth’s rotation does not take the object viewed out of the field of vision. The viewer doesn’t have to find the object and doesn’t have to set up the clock drive to track it. Tracking is also partly used in image stabilization software for cameras and smart phones, to prevent motion blurring of images.

2) SINGLE-PHOTON IMAGE SENSORS, whether of the single-photon avalanching diode type, or the type developed by Dr. Fossum, will allow passive imaging in nearly totally dark environments, without the use of IR or other illumination. This new type of image sensor will replace the monochromatic analogue “night-vision” devices, allowing color imaging at higher resolution than they can produce. Unlike these current devices, such sensors will not be destroyed by being exposed to normal or high lighting. Effectively, these sensors increase the effective light-gathering power of a telescope by at least an order of magnitude, allowing small telescopes to see what observatory telescopes see now.

3) EXIT PUPIL: The pupil of the dark-adapted human eye is around 7mm, which means light exiting a telescope must not have a wider-cross axis than this, or a percent of the light captured by the objective lens or mirror will be lost. If the magnification of a system is lowered, to give brighter images, this is limited by this roadblock. This is a well-known problem for visual astronomers. Astro-photographers get around this by two tricks. The first is to use a photographic sensor wider than 7mm, allowing a larger exit pupil and thus brighter images. A 1-inch sensor or photographic plate, for example, already allows an image thirteen times brighter than what a 7mm human pupil can see.

4) LONG EXPOSURE: The other trick astro-photographers use is to keep the shutter of their cameras open for longer periods, thus capturing more light, and allowing a bright image of a faint object to build up over time. As a telescope tracks the stars–so that they appear motionless in the telescopic view–this can be done for hours. The Hubble Space Telescope took a 100 hour long-exposure photograph leading to the famous “deep field” of ultra-faint distant galaxies. An example of a visual use of the same principle is the Sionyx Pro camera, which keeps the shutter open for a fraction of a second. If the exposures are short enough, a video can be produced which appears brighter than what the unaided eye sees. Sionyx adds to this with its black-silicon sensors, which are better at retaining all light that hits them. For astronomy, where stellar objects do not move and do not cause blurring if they are tracked, longer exposures can be created, with the image rapidly brightening as the viewer watches. Unistellar’s eVscope and Vaonis’s Stellina telescope, already use this function, but without an eyepiece. Instead, their images are projected onto people’s cell phones or other viewing devices. However, most astronomers want to be able to see something directly with their eyes, which is a limiting point on such types of telescopes.

Today at AWE 2,021 Qualcomm announced Snapdragon Spaces XR Developer Platform, a head-worn AR software suite the company is using to kickstart a broader move towards smartphone-tethered AR glasses.

Qualcomm says its Snapdragon Spaces XR Developer Platform offers a host of machine perception functions that are ideal for smartphone-tethered AR glasses. The software tool kit focuses on performance and low power, and provides the sort of environmental and human interaction stuff it hopes will give AR developers a good starting point.

Intel senior vice president Keyvan Esfarjani and Intel CEO Pat Gelsinger at the groundbreaking of two new chip fabrication plants in Chandler, Arizona, on Friday, Sept. 24 2021.

Intel Corporation.

The world’s smallest and most-efficient chips are usually referred to as 5 nanometer, a nomenclature that once referred to the width of transistors on the chip. They power cutting-edge data processing and the latest generation of Apple iPhones. TSMC and Samsung make all of these 5-nanometer chips at fabs in Asia.

The concept and technology behind Neuralink are so far ahead of what we’ve grown accustomed to that it might as well be magic. Make no mistake Neuralink is happening and it’ll be here sooner than you think…

I remember the first time I heard about Neuralink. I thought it was a joke or something far off in the future. Then I heard Elon Musk was behind it and immediately knew that this bonkers technology would be with us a lot sooner than any of us imagined.

The concept of Neuralink is simple: you have a chip implanted in your brain and with this chip, you can control things – computer games, applications, your phone, beam thoughts to other Neuralink users. Elon has even demoed the tech working inside a monkey’s head.

LISBON, Nov 2 (Reuters) — Chip designer Advanced Micro Devices (AMD.O) has been able to skirt most of the problems linked with the global chip supply shortage by forecasting demand years in advance, a top executive said on Tuesday.

Demand for electronics gadgets from people stuck in homes due to the pandemic has led to a shortage of semiconductors that are used from anything from mobile phones and cars.

But despite a squeeze in supply, AMD has been able to take market share away from rival Intel (INTC.O) in both PCs and servers with its latest line of processors.

Quantum physicists at the University of Copenhagen are reporting an international achievement for Denmark in the field of quantum technology. By simultaneously operating multiple spin qubits on the same quantum chip, they surmounted a key obstacle on the road to the supercomputer of the future. The result bodes well for the use of semiconductor materials as a platform for solid-state quantum computers.

One of the engineering headaches in the global marathon towards a large functional quantum computer is the control of many basic memory devices – qubits – simultaneously. This is because the control of one qubit is typically negatively affected by simultaneous control pulses applied to another qubit. Now, a pair of young quantum physicists at the University of Copenhagen’s Niels Bohr Institute –PhD student, now Postdoc, Federico Fedele, 29 and Asst. Prof. Anasua Chatterjee, 32,– working in the group of Assoc. Prof. Ferdinand Kuemmeth, have managed to overcome this obstacle.

The brain of the quantum computer that scientists are attempting to build will consist of many arrays of qubits, similar to the bits on smartphone microchips. They will make up the machine’s memory.