Toggle light / dark theme

But with such a rapid expansion into this new virtual world, will it be safe, regulated and, is it something we should fear or accept with open arms?

We talk to David Reid, a Professor of AI and spatial computing at Liverpool Hope University to see what to expect from the future of the metaverse.

There’s a few definitions. You can think of it from a technological viewpoint, where it’s simply the successor of the internet. Computers once took up big rooms, but they’ve shrunk until we got things like pocket-sized smartphones that you constantly interact with. The metaverse takes this a step further, making the actual environment you interact with virtual, removing the interface of computers completely.

Researchers have discovered a new method for correcting errors in the calculations of quantum computers, potentially clearing a major obstacle to a powerful new realm of computing.

In conventional computers, fixing is a well-developed field. Every cellphone requires checks and fixes to send and receive data over messy airwaves. Quantum computers offer to solve certain that are impossible for conventional computers, but this power depends on harnessing extremely fleeting behaviors of subatomic particles. These computing behaviors are so ephemeral that even looking in on them to check for errors can cause the whole system to collapse.

In a paper outlining a new theory for error correction, published Aug. 9 in Nature Communications, an interdisciplinary team led by Jeff Thompson, an associate professor of electrical and computer engineering at Princeton, and collaborators Yue Wu and Shruti Puri at Yale University and Shimon Kolkowitz at the University of Wisconsin-Madison, showed that they could dramatically improve a quantum computer’s tolerance for faults, and reduce the amount of redundant information needed to isolate and fix errors. The new technique increases the acceptable error rate four-fold, from 1% to 4%, which is practical for quantum computers currently in development.

By | Sep 1, 2022 | Artificial Intelligence

When Steve Jobs unveiled the iPhone in 2007, no one understood at the time how disruptive that device would be to existing technology. Now with rumors of Apple launching their augmented reality (AR) smart glasses products next year, people are speculating about how disruptive this technology will be.

Since iPhones are one of Apple’s primary revenue streams, they may be cautious about releasing a product that may encroach on their own turf. However, as we’ll suggest below, it may not be an either/or situation for users.

We might be too close to wirelessly charging our mobile devices anywhere.

Researchers from Sejong University have developed a new system to transmit power over 30 meters using infrared light wirelessly. During laboratory tests, researchers demonstrated that the new system could transfer 400 mW of light power. For now, this amount of power is enough for charging sensors; however, further progress could mean enough high levels to charge mobile phones in various public places.

The research has been published in Optics Express.


In Optics Express, researchers describe a new wireless laser charging system that overcomes some of the challenges that have hindered previous attempts to develop safe and convenient on-the-go charging systems.

Too much screen use has been linked to obesity and psychological problems. Now a new study has identified a new problem—a study in fruit flies suggests our basic cellular functions could be impacted by the blue light emitted by these devices. These results are published in Frontiers in Aging.

“Excessive exposure to blue light from everyday devices, such as TVs, laptops, and phones, may have detrimental effects on a wide range of cells in our body, from skin and , to ,” said Dr. Jadwiga Giebultowicz, a professor at the Department of Integrative Biology at Oregon State University and senior author of this study. “We are the first to show that the levels of specific metabolites—chemicals that are essential for cells to function correctly—are altered in exposed to blue light.”

“Our study suggests that avoidance of excessive blue light exposure may be a good anti-aging strategy,” advised Giebultowicz.

The U.S. Federal Trade Commission (FTC) on Monday said it filed a lawsuit against Kochava, a location data broker, for collecting and selling precise geolocation data gathered from consumers’ mobile devices.

The complaint alleges that the U.S. company amasses a “wealth of information” about users by purchasing data from other data brokers to sell to its own clients.

“Kochava then sells customized data feeds to its clients to, among other purposes, assist in advertising and analyzing foot traffic at stores or other locations,” the FTC said. “Among other categories, Kochava sells timestamped latitude and longitude coordinates showing the location of mobile devices.”

New green-light absorbing photodetectors could be useful for medical sensors, fingerprint recognition, and more.

New green-light absorbing transparent organic photodetectors that are highly sensitive and compatible with CMOS fabrication methods have been developed and demonstrated by researchers. Incorporating these new photodetectors into organic-silicon hybrid image sensors could be useful for many applications. These include light-based heart-rate monitoring, fingerprint recognition, and devices that detect the presence of nearby objects.

Whether used in scientific cameras or smartphones, most of today’s imaging sensors are based on CMOS technology and inorganic photodetectors that convert light signals into electric signals. Although photodetectors made from organic materials are attracting attention because they can help boost sensitivity, for example, it has thus far proven difficult to fabricate high-performance organic photodetectors.

Ending cellular dead zones in the U.S. is the ultimate goal.

Cellular service provider T-Mobile has teamed up with Elon Musk’s SpaceX to provide universal coverage using the constellation of Starlink satellites, a press release reveals.

Cellular services have gone through many iterations since their first roll-out. Most countries around the world are currently seeing a roll-out of the fifth generation (5G) of mobile connections that allows the bandwidth for high-speed gaming and streaming high-definition videos.


In a live event today, T‑Mobile and SpaceX announced Coverage Above and Beyond: a breakthrough new plan to bring cell phone connectivity nearly everywhere.

As any driver knows, accidents can happen in the blink of an eye—so when it comes to the camera system in autonomous vehicles, processing time is critical. The time that it takes for the system to snap an image and deliver the data to the microprocessor for image processing could mean the difference between avoiding an obstacle or getting into a major accident.

In-sensor , in which important features are extracted from raw data by the itself instead of the separate microprocessor, can speed up the . To date, demonstrations of in-sensor processing have been limited to emerging research materials which are, at least for now, difficult to incorporate into commercial systems.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed the first in-sensor processor that could be integrated into commercial silicon imaging sensor chips–known as complementary metal-oxide-semiconductor (CMOS) image sensors–that are used in nearly all commercial devices that need capture visual information, including smartphones.